N

HAL

open science

Transparent Memory Optimization using Slots

Pablo Tesone, Santiago Bragagnolo, Stéphane Ducasse, Marcus Denker

» To cite this version:

Pablo Tesone, Santiago Bragagnolo, Stéphane Ducasse, Marcus Denker. Transparent Memory Op-
timization using Slots. International Workshop on Smalltalk Technologies 2018, Sep 2018, Cagliari,

Ttaly. hal-02565748

HAL Id: hal-02565748
https://hal.archives-ouvertes.fr/hal-02565748
Submitted on 6 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr/hal-02565748
https://hal.archives-ouvertes.fr

Transparent Memory Optimization using Slots

Pablo Tesone
Unité de Recherche Informatique et Automatique
IMT Lille Douai, Univ. Lille
Lille, France
Inria Lille-Nord Europe
Lille, France
pablo-adrian.tesone@imt-lille-douai.fr

Marcus Denker
Inria Lille-Nord Europe
Lille, France
marcus.denker@inria.fr

Abstract

Memory size limits the number of instances available in
memory at a single time. This limitation affects applications
that require large graphs of objects. Moose is an example of
such applications. Moose is a tool used in software analysis.
It parses and models software code in an object graph. Later
it performs multiple operations (i.e., measuring, querying,
mining and analysing the code) on such models. However,
not all the information in the model is present, as the model
is intended to be used with different applications and pro-
gramming languages (not all applications or programming
languages uses the same elements). Analysis of different
models shows that between 30 and 50% of memory is wasted.
Analysis models produced in an industrial context reveals
that models composed of several millions of instances used
up to 2Gb memory.

In this work, we propose new slots and their combination
to transparently optimize memory consumption: NilAwareS-
lot optimizes automatically nils and LazylInitializationSlot
handles the case where an empty collection is required and
use by many clients. We show that performing a limited
amount of changes, we improved the memory footprint of
Moose models in around 30%. We also show that our solution
has comparable performance with an ad hoc solution, but
without the need for boilerplate code. To implement this
solution, we leverage the existing Pharo support of slots,
write barriers and efficient forwarders.

CCS Concepts -« Software and its engineering — Gen-
eral programming languages;

Keywords Memory consumption, optimization, first class
instance variables

ACM Reference Format:
Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane
Ducasse. 2018. Transparent Memory Optimization using Slots. In

IWST’18, September 10-14th, 2018, Cagliari, Italy
2018.

Santiago Bragagnolo
Inria Lille-Nord Europe
Lille, France
santiago.bragagnolo@inria.fr

Stéphane Ducasse
Inria Lille-Nord Europe
Lille, France
stephane.ducasse@inria.fr

Proceedings of International Workshop on Smalltalk Technologies
(IWST’18). ACM, New York, NY, USA, 10 pages. https:/doi.org/

1 Introduction

Complex object-oriented applications require large object
graphs in memory. If instances in the graph have uninitial-
ized (nil valued) instance variables or point to empty collec-
tions, memory is wasted. As soon as the graph gets bigger,
the problem also increases.

Modeling tools such as model checking or software analy-
sis exhibits such problems. Let us take Moose as an example.
Moose! is an extensible reengineering environment designed
to provide the necessary infrastructure for tool development
and integration. Moose’s core is a language-independent
meta-model. It offers services such as grouping, querying,
navigation, and advanced tool integration mechanism [6]. To
perform different analyses, Moose requires software models
to be loaded in memory. The model is represented in a graph
of objects following the FAMIX [4, 5] metamodel.

Moose is a typical case since its models have to manipulate
often several millions of entities, its models are represented
as graphs and storing such graphs does not work well with
traditional relational databases [3, 12]. These models do not
fit in the relational model, as these databases are designed to
query structured data without relational cycles. RDBMSs?
are efficient unless the data contains many relationships and
cycles requiring joins of large tables [14]. Also, by the nature
of the model, it cannot be analysed in parts [6].

When analysing concrete Moose models, one can see that
memory is wasted. Around 30% of the instance variables
have nil as value, these instance variables occupy space but
do not provide any meaningful information. Also, the model
includes a large number of empty collections, that even being
empty they take up space. For example, an empty Ordered-
Collection occupies 68 bytes including its backing array”.

!http://www.moosetechnology.org/
Relational Database Management System
3in 32-bits Pharo

https://doi.org/
http://www.moosetechnology.org/

IWST’18, September 10—14th, 2018, Cagliari, Italy

This is amplified as the models for an analysed application
contains several tenth of millions of objects. For example, the
FAMIX model for Hadoop 3.1.0-RC1* includes 48 millions of
instances. It has 25% of nil instance variables and 25 millions
of empty collections. Typical memory waste is caused by
nil instance variables and in empty collections (Section 2).
Note that such problem is not linked to the analysed models
but are artefacts of the modeling approach. Moose captures
as much as possible as information to offer the possibility
to perform different analyses. Industrial users of Moose, for
example, Synectique® report than in a model with around
27 millions of instance variables, 10 millions contains nil and
there are 5 millions of empty OrderedCollection instances.

This waste of memory may be solved during development
using techniques such as lazy initialization, object splicing
or storing instance variables in associated data structures
(e.g., HashMaps, Arrays, Linked Lists). All of these strategies
require boilerplate code to be applied all over the application.
However, when the application is already developed these
modifications represent a reimplementation of the applica-
tion with its associate effort.

The contribution of this paper is the design of new slots
that implement a transparent memory optimization that
does not require boilerplate code nor special VM support
(Section 3).

Our solution is implemented in Pharo [2]. Our solution
leverages existing Pharo infrastructure, namely Slot [13],
Write Barrier [1] and Efficient Forwarders [9] (Section 4).

We validated our solution by using it in the new FAMIX
implementation. We reduced memory use by around 30%,
depending on the modelled application (Section 5). Even
though our solution presents an overhead when compared to
the default unoptimized version, our solution has comparable
results with a custom solution (Section 6) with the benefit of
not requiring boilerplate code. Moreover, these results could
have been improved even more but we limited the changes
to only perform a small amount of changes to an existing
application (Section 7).

There are other solutions to this memory misuse, e.g.,
Lazy initialization or instance reshaping [7, 10, 11]. How-
ever, they require boilerplate code, special Virtual Machine
and language support, or recompilation of methods during
execution (Section 8).

Finally, we present a conclusion and possible future works
(Section 9).

2 Wasted Memory

The problem that we address is, in a nutshell, the waste of
memory from unused objects and instance variable slots.

“http:/hadoop.apache.org/
3 A company providing software analysis solutions using Moose
http://synectique.eu/

Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane Ducasse

2.1 A Simple Example

To illustrate the problem, we propose a simplified example
that shows the problem ubiquity. This example represents a
small part of a movie database, inspired from the information
available in IMDb® (Figure 1).

VHSMovie VHSMovieParticipation
tite . cast *[role
internationalTitles [O—= movie
country -
language person:
additionalLanguages role:
producer movie:
filmingLocations person
plotSummary role
plotKeywords movie
genres "
certificate
releaseDate
internationalReleaseDates movies person
budget
worldwidelncomes 1
countrylncomes
runtime VHSPerson
awards name
director birthday
name:
title movies:
tttle: birthday:
name

movies
birthday

Figure 1. Example model

This example exposes a large amount of variables. Many
of these variables will be used only on specific movies. For
example, the variable income will be filled up once the movie
is released. Meanwhile it will point to nil. The variables
additionalLanguages, awards, internationalReleases, etc, will all
point to empty collections, up to the moment that they get
filled. Each of these pointed variables is susceptible to be
used, as much as they may remain unused by the rest of the
lifecycle of the object.

This amount of empty information, may not be a real prob-
lem for a small dataset. But in a large dataset, as IMDB, with
more than 4,734,693 titles’, this waste of memory become
more obvious.

With having only one empty collection per title, we would
have at least 4,734,693 idle collections. With having only one
variable per object unused, we would have at least 4,734,693
idle slots. Each slot takes a word size for storing information,
therefore, around 18mb wasted in a 32-bit architecture, 36mb
on a 64-bit architecture.

6IMDb, also known as Internet Movie Database, is an online database of
information related to world films, television programs, home videos and
video games, and internet streams, including cast, production crew and
personnel biographies, plot summaries, trivia, and fan reviews and ratings.
An additional fan feature, message boards, was abandoned in February 2017.
Originally a fan-operated website, the database is owned and operated by
IMDb.com, Inc., a subsidiary of Amazon.

701/06/2018, https://www.imdb.com/pressroom/stats/

http://hadoop.apache.org/
http://synectique.eu/
https://www.imdb.com/pressroom/stats/

Transparent Memory Optimization using Slots

Even though nowadays 18mb or 36mb is not a significant
amount of wasted memory, this is a really small example.
For illustrate the problem in industrial dimensions, we show
some industrial case analysis.

2.2 Moose

Moose is a free and open source platform for software and
data analysis built in Pharo. Moose offers multiple services
ranging from importing and parsing data, to modelling, to
measuring, querying, mining, and to building interactive and
visual analysis tools.® Moose is used largely for software anal-
ysis. The software analysis is specifically supported through
the FAMIX family of meta-models. The core of FAMIX is a
language-independent meta-model that is similar to UML
but it is focused on analysis. Furthermore, it provides a rich
interface for querying models.

A FAMIX model represents software entities as instances,
each instance includes fields that holds all the properties and
relationships of the entity. For example, as shown in Figure
2, the representation of a class (FmxNGClass) has 27 instance
variables. These instance variables point to values, other
single entities or to collections of entities and values. The
attribute name is an example of an instance variable point-
ing as a value, as it points to a String. Examples of instance
variables pointing to collections of entities are methods and
superinheritance®.

The described problem arises in FAMIX models because
not all of the instance variables have values. For example,
the instance variable usedTraits or sublnheritances point to
empty if the modelled language or entity do not use traits or
have subclasses.

This problem affects industrial users of Moose. Table 1
presents the memory waste produced when an industrial
application is modelled to be analysed by Moose. As the table
shows that 35 % of the instance variables are unused (they
point to nil), and there are five million empty collections.

Total instance variables 26,852,653
Unused instance variables | 9,458,715
Empty collections 5,023,508

Table 1. Memory Waste in Industrial Application modelled
as a FAMIX Model

To analyse more deeply this problem, we work with mod-
els of open-source projects. Table 2 presents a summary of
the information of the FAMIX model for the full Hadoop
repository (it includes Hadoop itself and all the related tools
that are bundled with Hadoop). As the table shown, the

8http://www.moosetechnology.org/
https://en.wikipedia.org/wiki/Moose_(analysis)
101t is a collection because FAMIX support to model multiple inheritance

IWST’18, September 10—-14th, 2018, Cagliari, ltaly

H q *
inheritance * subinheritance

FmxNGClass
X subinheritances
e > FrNGTral
. usedTraits * [...
usedTraits
state
comments
subinheritances containerFiles
superinheritance ’77@,/)
methods o
usedTraits » | FmMxNGMethod
subinheritances:
superinheritance: state
methods: comments
usedTraits: containerFiles

Figure 2. Simple moose entity model

amount of wasted memory takes more significance with big-
ger model. In comparison, this model includes 48 million
entities.

Size (MB) | % Waste
Total Instances 2,387.7
Unused Instance Variables 497 20%
Empty Collections 1,227 51%

Table 2. Memory Waste in Industrial Application modelled
as a FAMIX Model

Different solutions exit to solve memory waste. However,
applying them to an already implemented solution requires
the modification of a large amount of code base. An optimal
solution should be as least intrusive as possible minimizing
the number of modifications and required boilerplate code.
It should be noted that as with any other optimization, it is
difficult to detect the bottlenecks without having a running
implementation.

In the following section, we present existing ad-hoc solu-
tions and the problems that arise when applied them to an
existing application. In Section 3, we present our proposed
solution and how it solves the presented problem. Finally,
Section 8 presents other techniques to solve this problem.

2.3 Ad hoc Solutions

There are some ways for solving this problem with more
quotidian ad hoc techniques, and as we will show, these
techniques bring unwanted side effects.

Lazy initialization. Lazy initialization of instance variables
pointing to empty collections reduce the memory usage. This

https://en.wikipedia.org/wiki/Moose_(analysis)

IWST’18, September 10—14th, 2018, Cagliari, Italy

solution seems simple as it only needs to redefine the getter
method to the variable as shown in Listing 1. This implemen-
tation returns a new OrderedCollection when the instance
variable is nil.

VHSMovie >> cast
A cast ifNil: [OrderedCollection new]

Listing 1. Lazy initialized getter for an instance variable
holding a collection.

However, this naive solution presents three problems.
First, it requires a special method to modify the collection,
as the OrderedCollection returned by the getter method is
not referenced when the instance variable is nil. So, adding
an element to an empty collection requires the use of a spe-
cial message. Listing 2. Second, all accesses to the instance
variable should be rewritten to use the getter and mutator
messages. Last, if any client instance requires to store a ref-
erence to the collection, or this is passed as a parameter and
later modified, the modified collection is not referenced. This
requires a getter method that materializes the collection on
access (Listing 3). The different clients and even the methods
in the same class should use the correct messages depending
on what they need to do with the collection.

VHSMovie >> addCast: anElement
cast ifNil: [cast := OrderedCollection new].
cast add: anElement

Listing 2. Required collection mutator method

VHSMovie >> materializedCast
A cast ifNil: [cast := OrderedCollection new]

Listing 3. Lazy initialized getter for an instance variable

holding a collection.
Applying such partial solution is possible using automated

code rewriting. However, it requires the repetition of boil-
erplate code for each of the instance variables holding a
collection. For each of the instance variables, it is required to
have a proper getter method and a mutator for the collection.
Second, it requires to analyse all the users of the modified
classes to check that they are correctly using the proper
messages, i.e., checking that they are not modifying the col-
lection returned by the lazily initialized getter, or keeping a
reference to the collection.

Dictionary of Instance Variables. Using a dictionary to
store the instance variables reduces the impact of having
many uninitialized instance variables. This solution requires
to define the class with only a single field, this field holds a
reference to a dictionary, and all the instance variables that
were previously defined in the class are stored in this dictio-
nary. Listing 4 shows the implementation of the accessors
for this model.

This solution requires the modification or creation of ac-
cessor methods for all the instance variables in the class.
These accessors are boilerplate code across the modified
classes.

Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane Ducasse

"Definition of the class, with only one instance variable"
Object subclass: #VHSMovie

instanceVariables: 'values'

classVariableNames: '’

package: 'SlottyExample-plain'

VHSMovie >> initialize
super initialize.
values := Dictionary new

VHSMovie >> cast
A values at: #cast

VHSMovie >> cast: aValue
A values at: #cast put: aValue

Listing 4. Accessors Methods using a Dictionary of Instance
Variables

Sharing and privatizing. Sharing a default value among
a set of instances is possible. The problem is then how to
turn such shared value into a private instance specific one.
Indeed, advanced smalltalk programmers may think that us-
ing become: [9] offers a solution. This is not the case because
become: swaps pointers. Therefore all the objects sharing
the value would share another value. There is no ready to
use solution for such a problem.

Sharing by default. It is possible to share a value by de-
fault among a set of instances and to make it specific to an
instance on demand. This requires to use a class variable
and an instance variables. Listing 5 shows a possible ad hoc
implementation.

Object subclass A
instance: col
class: Col

A class >> initialize
Col :=OrderedCollection new.

A >> initialize
super initialize
col :=Col

A >> prepareChangingCol
col := Col copy

A >> changingCol
col add: 'something'

Listing 5. Ad hoc sharing of a default value.

To work such approach forces the programmer to invoke
prepareChangingCol before any side effect on the share col-
lection. In addition, the class variable should only be used
during the instance creation. In addition, it forces to have
both a class variables and an instance variables.

Transparent Memory Optimization using Slots

3 Slots to the rescue

Slots provide an extension point to customize the behaviour
of the instance variables in a given class. They are a first-
class representation of instance variables. Classes in Pharo
includes a list of slots.

Every time an instance variable is accessed, this access is
performed using the slot. Also when a method is compiled
the slot is responsible to emit the set of bytecode to execute
this operation. Slots allow us to modify the behaviour when
an instance variable is read or written. As slots are first-class
objects, they can be easily implemented and extended by the
application developers. This flexibility allows the application
developer to change behaviour that was previously reserved
to language developers [13].

Slot
read: anObject
write: aValue to: anObject
emitStore: aBuilder
emitValue: aBuilder

Figure 3. Slot API to implement by the new extensions

Figure 3 is the basic API implemented by slots:

e read: anObject reads the represented instance variable
from anObject.

e write: aValue to:anObject writes aValue into the repre-
sented instance variable of the anObject.

e emitStore: aBuilder uses the method builder passed as
parameter to generate the bytecode to be used when
writing into an instance variable.

e emitValue: aBuilder uses the method builder passed as
parameter to generate the bytecode in to be used when
reading an instance variable.

The Slot class provides a default implementation of emit-
Store: and emitValue: that uses the read: and write:to: messages.

Using slots, we modify how the instance variables are
stored in it. To minimize memory waste we propose two
slots: LazyInitializationSlot and NilAwareSlot. LazyInitialization-
Slot implements a transparent lazy initialization of the in-
stance variable and sharing of the default value. NilAwareSlot
transparently implements an instance variable that does not
occupy space if its nil. These slots then are used in the classes
to transparently implement memory optimization.

3.1 Lazy Initialized Slot

LazylnitializationSlot implements transparently the following
behaviour:
e Return a default value when the instance variable is
nil.
e Share the default value between all the instances of
the class using this slot.
e Detect when the shared value is modified and update
all the references to it.

IWST’18, September 10—-14th, 2018, Cagliari, ltaly

e Store the value only when it is neither nil nor the
shared value.

This slot is used to implement a lazily initialized instance
variable that shares the same default value for all the in-
stances.

Following the example already used, VHSMovie class has
the cast instance variable. This variable is initialized with
an empty OrderedCollection. In the naive implementation, all
the instances of VHSMovie have their own OrderedCollection.
An improvement is to share the empty collection, and only
create a new one when the VHSMovie is modified to add a
new element in the cast collection. LazylInitializationSlot im-
plements this behaviour. Figure 4 shows the implemented
slot.

Slot

LazylnitializationSlot
defaultValue
initializationBlock <— slot
read: anObject
write: aValue to: anObject
emitStore: aBuilder
emitValue: aBuilder

ReadOnlyWrapper
sharedValue
------- | creationBlock
targetinstance

Figure 4. The LazylnitializationSlot slot

To perform this behaviour, when the cast instance variable
is read the slot returns a ReadOnlyWrapper wrapping the
default value.

This wrapper acts as a proxy, redirecting the messages it
receives to the default value [8]. Once the wrapper receives
a message that modifies the shared value, it intercepts the
message and it creates a new instance using the creationBlock
in the slot. When the new value is created the instance vari-
able of the targetinstance is updated and all the references
to the wrapper are updated to point to the new value of the
instance variable. After the new value is created, the message
that started the instance creation process is dispatched to
the new instance.

If the slot is used to write a value in the instance variable,
it also replaces all the references to the wrappers with the
default value effectively removing the wrapper.

Figure 5 presents an example where two instances of
VHSMovie have the default value of the cast instance variable.
Both instances have nil as value in their instance variables.
The client objects that access to the cast instance variable
have a reference to ReadOnlyWrapper instances. Each client
object has a reference to its ReadOnlyWrapper instance. If
nobody keeps a reference to the value of cast, there is no
ReadOnlyWrapper. It is only kept while it is needed to update
the reference.

Figure 6 shows the example when the cast collection of the
VHSMovie aliens is modified adding a new actor. To perform
this, all the references to the ReadOnlyWrapper of aliens are

IWST’18, September 10—14th, 2018, Cagliari, Italy

alien:Movie

cast

3| nil

cast

aliens:Movie // :OrderedCollection

:ReadOnlyWrapper

:ReadOnlyWrapper

/o

thirdObject

oneObject secondObject

<<uses alien>> <<uses aliens>> <<uses aliens>>

Figure 5. When the VHSMovie instances have empty collec-
tions

alien:Movie [— cast >{ nil anActor

aliens:Movie [— cast > | :OrderedCollection

:OrderedCollection

:ReadOnlyWrapper secondObject thirdObject

<<uses aliens>> <ses aliens>>

oneObject

<<uses alien>>

Figure 6. When the collection is modified the clients are
updated

replaced with a reference to a new OrderedCollection and the
Actor object is added to this newly created collection.

The ReadOnlyWrapper handling is needed to keep the
clients updated, this is only needed if the client objects keep
references to the original value of cast.

3.2 Nil Aware Slot

NilAwareSlot provides a transparent way of compacting in-
stances with nil values. Compact instances only occupy the
space that is required by their used instance variables.

The instance of the classes using NilAwareSlot have two
instance variables. The first one holds an integer that is used
as bit-mask marking the used variables; and the second is an
array with the values that are not nil.

Figure 7 shows an example of how the information is
stored. The logical model represents the traditional instance
layout for VHSMovie instances, and the physical model shows
how the information is stored in the memory using our
solution.

Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane Ducasse

<<logical>>
alien:VHSMovie
title := 'Alien’
internationalTitles := nil
country := 'USA'
language := 'English'
additionalLanguage := nil

<<physical>>

values :Array
1. "Alien’

2. 'USA'

3. 'English’

Figure 7. Comparison between the logical and physical in-
stances.

The values that are not nil are stored in the associated
array. So, the array does not contain any nil value. The array
is compacted every time a value is removed to improve mem-
ory use, and it is enlarged when an instance variable got
a non nil value. If the instance variable is nil, the bit-mask
has a 0 for the slot index. All the NilAwareSlot have a non-
conflicting index. Otherwise, if the instance variable has a
value a 1 is stored in the bit-mask.

When the slot is used to access the instance variable, the
bit-mask is read to check if the instance variable is nil or
not. If the variable is nil, the read: method returns nil. If
the variable is not nil, an index inside the array is calculated.
This index is then used to retrieve the instance variable value
from the associated array.

Each instance variable with a non nil value has a position
in the array. This position is used to access the value. It is
calculated from the slot index and the bit-mask. As the array
does not contain nil values, the nil slots are skipped during
the calculation of the index.

For example, if the bit-mask is 9 (2r1001)*!, the first and
fourth instance variables are used. So the index!? for access
to the fourth instance variable is 2. As it is the smallest not
used slot. If a non nil value for the third instance variable
is stored, the array index for the third will be 2 and for the
fourth will be 3; as the bit-mask new value is 13 (2r1101).

3.3 Combining the Slots

To completely solve the problem, we need the ability to use
the two slots at the same time in the same class. We require
to have lazily initialized slots that store their values in nil
aware slots. So, we have added to the LazylInitializationSlot
the base slot to use as storage. Then the LazylnitializationSlot
delegates to the base slot the final read and write of the
instance variable in the instance. Figure 8 shows the extended
LazyInitializationSlot.

If the LazylnitializationSlot is used alone, the base slot it
uses is BaseSlot. BaseSlot is a regular instance variable slot,
however it is hidden from the definition. It stores the values
in the instance between adding any special behaviour.

HSmalltalk base-2 number notation.
12In Smalltalk all the indexes are one-based.

Transparent Memory Optimization using Slots

Slot

LazylnitializationSlot
defaultValue
initializationBlock
baseSlot
read: anObject
write: aValue to: anObject
emitStore: aBuilder
emitValue: aBuilder

Figure 8. The LazylnitializationSlot extended to support the
NilAwareSlot

When the LazylnitializationSlot is used with the NilAwareSlot,
the LazylnitializationSlot uses a NilAwareSlot as base slot. So,
the actual value of the lazy initialized value is stored using
the technique implemented by the NilAwareSlot.

3.4 Using the Slots

Once the slots are implemented, we have to use them in the
classes of the application. Using the slots is as easy of using
any slot. The application includes the following definition
of the VHSPerson class:

Object subclass: #VHSPerson
instanceVariableNames: 'name movies birthday'
classVariableNames: '’
package: 'SlottyExample-plain’

We want to make all the slots NilAware, so the new defi-
nition is:

Object subclass: #VHSPerson
slots: {
#name => NilAwareSlot.
#movies => NilAwareSlot.
#birthday => NilAwareSlot }
classVariables: { }
package: 'SlottyExample-plain’

To use LazylnitializationSlot we have to provide some pa-
rameters in its creation. The slot requires to know: (1) a block
to create the default value, (2) a block to create a value to
be used when trying to mutate the default value, and (3) the
class of the base slot. In this case, we will use the NilAwareS-
lot as the base slot. If we use LazyInitializationSlot to provide
a default value for the movies instance variable, the class
definition is the following.

Object subclass: #VHSPerson
slots: {
#name => NilAwareSlot.
#movies => (LazyInitializedSlot
default: [OrderedCollection new]
initializationBlock: [OrderedCollection new]
baseSlotClass: NilAwareSlot).
#birthday => NilAwareSlot }
classVariables: { }
package: 'SlottyExample-plain’

IWST’18, September 10—-14th, 2018, Cagliari, ltaly

As shown in the listings, the modification is straightfor-
ward and it is simpler than using an ad hoc solution.

4 Implementation

To implement the slots minimizing the overhead we have
implemented them using different techniques existing in
Pharo.

The LazylnitializationSlot slot requires to detect the methods
that have side-effect on the shared instance. To do so, the
slot uses the Write Barrier present in Pharo [1]. This write
barrier permits us to detect the messages that try to change
the shared default value.

The update of the references to ReadOnlyWrapper is per-
formed using the Efficient Forwarders [9]. This technique
present in the Pharo VM allows us to update the references
without the need to scan the whole heap, it only requires
marking the replaced instance. Later on, the references are
updated only when they are used.

To be able to share the ReadOnlyWrapper, we use a weak
structure. If the ReadOnlyWrapper instances are not refer-
enced, they will be reclaimed by the garbage collector. With-
out leaking memory.

5 Results of Applying the solution

We validated our solution updating the FAMIX implemen-
tation to use the proposed slots. To use our solution the
definition of the instance variables should be modified to use
the new slots.

We did not modify all the instance variables, we started
with an analysis of the memory usage. To minimize the
required changes we used a tool called MemoryStats'>. This
tool allows us to identify the instances that have more unused
instance variables and empty collections. After the analysis,
we just performed the following changes.

e Modify MooseEntity to have NilAwareSlot s. This class is
the superclass of all the classes in the FAMIX model.

e All the subinstances of MooseEntity includes an in-
stance of MooseMemoryEfficientStore to store optional
attributes and properties of the instance. The instances
of MooseMemoryEfficientStore have two collections that
are mostly empty, so we changed them to be lazily ini-
tialized.

e FAMIX models use two slots to represent relations
between entities (FMOne and FMMAny), we modified
them to be subclasses of NilAwareSlot.

e Many-to-one and Many-to-many relations are mod-
elled using the class FMMultivalueLink. We modified this
class to use lazily initialized collections.

Doing these reduced changes, we achieved our objective
of reducing the memory footprint of FAMIX models, and
also we proved that our solution only requires small changes

Bhttps://github.com/tesonep/memoryStats

https://github.com/tesonep/memoryStats

IWST’18, September 10—14th, 2018, Cagliari, Italy

Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane Ducasse

Original Using Our Solution
Instances | Empty Nil Memory| Instances | Empty Nil Memory| Saving
Collections | Variables | (MB) Collections | Variables | (MB)
ArgoUML 4,962,653 | 2,352,843 | 14,966,375 | 180.5 2,826,212 | 921,420 3,819,773 | 106.4 41%
HSQLDB 5,171,400 | 2,309,958 | 13,292,098 | 192.7 3,081,508 | 776,616 3,862,947 | 125,9 34%
Hadoop 48,114,127 21,221,890 | 124,308,862 2,387.7 | 29,209,714 7,218,219 | 35,015,147 | 1,768,1 | 26%

Table 3. Results of using the solution

to gain a big improvement. We have performed the analysis
and the changes in 6 hours of work. We reduced the memory
footprint of FAMIX models in an average of 30 %.

To validate the impact of our solution, we loaded the mod-
els of 3 open source applications. We selected two medium
applications (ArgoUML and HSQLDB) and one big applica-
tion (Hadoop). For ArgoUML!#, we analysed the version 0.34.
For HSQLDB'®, we generated the model from the version
2.4.1, and for Hadoop we used version 3.1.0-RC1. Table 3
shows more detailed results of the three analysed FAMIX
models.

6 Benefit of using our solution

The presented solution performs a memory saving, although
it includes a level an overhead in execution time. However,
we in this section we present that the overhead is less or
equals to an ad hoc solution.

To perform this benchmark we implemented the movies
example in 3 flavours:

e A Baseline implementation that does not use any op-
timization in memory. It is the basic object-oriented
design. All the instance variables are initialized in nil
or with an empty ordered collection. As said, this base-
line establishes the minimum execution time and the
maximum memory usage.

e An ad hoc implementation. This implementation in-
cludes lazy initialization and dictionary backed fields
as shown in Section 2.3. The implemented ad hoc so-
lution presents a possible solution to this problem.

e Our solution implementation. This implementation
uses the newly proposed set of slots.

For these benchmarks, we will be using a subclass of
LazylnitializedSlot that does not perform the update of the
references or the use of ReadOnlyWrapper, as this functional-
ity is not implemented in the ad hoc solution.

All the source code needed to reproduce the benchmarks
is available in Github!®. Also in this repository, there are
instructions to reproduce the benchmarks.

All the benchmarks were executed in a machine running
0S X 10.12.6, with a 2,6 GHz Intel Core i7 processor and 8 GB

4http://argouml.tigris.org
Bhttp://hsqldb.org/
16https://github.com/tesonep/slotty

1600 MHz DDR3 of memory. We used Pharo 7-Alpha (build
915) 32-bits, using the Production Spur VM 201805090836.

6.1 First Scenario: Single instance creation and
modification

In the first scenario, we tested the speed of creating new
instances, setting a nil valued instance variable to a value
and adding an element to an empty collection. Listing 6
shows the code executed in the benchmark.

aninstance := VHSMovie new
title: 'aTitleToSet';
title;
yourself.
aninstance addinternationalReleaseDates: (Date today)

Listing 6. First Scenario: Single instance creation and
modification

This benchmark stresses the creation of instances and set-
ting values to nil instance variables and lazy initialization
of the collections. This analysis is important as our solution
requires special execution when an instance variable is mod-
ified from nil to another value. Also, the lazy initialization
of a collection requires special treatment. So, this scenario
stresses our solution and the ad hoc solution.

Table 4 shows the results of this benchmark. As the results
show, our solution provides an overhead comparable with
the ad hoc solution, with the benefit of having less boilerplate
code.

Implementation | Executions per second | Overhead
Baseline 245,257 0%
Ad Hoc 188,623 30 %
Our Solution 191,873 28 %

Table 4. Results of first Scenario: Single instance creation
and modification

6.2 Second Scenario: Memory Footprint

In this scenario we tested the memory impact of our solution,
comparing it with the ad hoc solution and the baseline imple-
mentation. We created a million of instances and compared
the memory impact of the three implementations. This is im-
portant to show that our solution presents a better memory

http://argouml.tigris.org
http://hsqldb.org/
https://github.com/tesonep/slotty

Transparent Memory Optimization using Slots

footprint and a comparable processing impact of the ad hoc
solution. Listing 7 shows the benchmarked code.

instances := OrderedCollection new.
1 to: 1000000 do: [:i | aninstance:= VHSMovie new
title: 'aaa’';
title;
yourself.
anlnstance internationalReleaseDates add: (Date today).
instances add: x]

Listing 7. Second Scenario: Memory Footprint

Table 5 shows the results of this benchmark. The results
are comparable with the ones in our validation. Our solution
provides a better memory footprint compared with the ad
hoc solution.

Implementation | Memory Size (in MB) | Savings
Baseline 612 0%
Ad Hoc 222 63 %
Our Solution 169 72.5%

Table 5. Results of second Scenario: Memory Footprint

7 Discussion

From the benchmark, we observe that our proposed solution
presents an execution time overhead compared with the
baseline solution, although also we observer that the memory
footprint has been reduced in an important amount. We
have decided to implement a solution that gets the minimum
memory footprint.

In the benchmarks that we presented, the ad hoc solution
seems as an equivalent one. However, our solution presents a
single point of improvement, modifying the implementation
of the slots only requires to modify a class. Also, it does not
require boilerplate code distributed in all the affected classes.

Our proposed solution allows us to implement other strate-
gies, to balance the memory footprint and the execution time
penalty. Having different implementations and comparing
them is a subject of future work.

Our solution is designed to be applied to an application
that is already built and present memory footprint problems.
It requires to analyse the application and detect the bottle-
necks where our solution provides better results. It is true
that not all the applications will present the same reduction
of memory footprint, even more, there are scenarios where
our solution does not provide any optimization. However,
as shown in the paper, it is applicable and provides a con-
siderable optimization if the conditions presented in Section
1 and Section 2 are met. An example of a place where the
optimization is not possible it is when the instances have
less than 2 instance variables, applying NilAwareSlots to them
does not provide any optimization.

IWST’18, September 10—-14th, 2018, Cagliari, ltaly

Our benchmark only centred on showing that the use of
our solution does not produce an execution penalty that
proves it cannot be used. The execution penalty exists, al-
though it showed that it does not affect the normal loading
and use of the FAMIX models.

Also, we are aware that there are more performance differ-
ences between the ad hoc solutions that we are not correctly
showing. As future work, we have the idea of comparing our
solution with different sizes of objects, different distributions
of nil instance variables and empty collections.

In the validation, we could have continued optimizing the
application, although we decided to show which was the
impact of limited changes in the correct spots.

The set of analysis techniques and the tools used are out-
side the scope of this work. Even more, the analysis of this
tools and techniques is a subject of future work. This future
work may include the automation of the suggested changes.

8 Related Works

The Pharo default image includes a set of slots implementing
special behaviour, examples of them are BooleanSlot which
stores boolean fields in a single value, and PropertySlot which
uses a Dictionary to store the instance variables. However,
these implementations are not used extensively in applica-
tions, and they are not implemented to minimize memory
footprint as they are only a reference implementation.

Schmidt [10] describes a way of implementing dynamic
slots in an object-oriented programming language. His mo-
tivation and the implementation techniques are similar, al-
though its solution requires modification to the runtime
system. He validates its solution with a limited example
showing an improvement in the memory usage. He imple-
ments its slots as a linked list. Requiring a linear search when
modifying a slot. We implemented the lookup using cached
indexes to avoid this linear search.

Holzle and Ungar [7] implemented a way of extending
instances with new instance variables, but this technique
requires support from the Virtual Machine. Our solution does
not require support from the Virtual Machine as everything
is resolved in the image.

Serrano [11] proposes a way of extending an instance by
changing its class to a wider subclass. His solution requires to
create a subclass of the original class. Also, it is not intended
to be dynamically adapted while the instance variable is
used or not. Our solution allows us to shrink the instance
variable as soon as an instance variable is not used any more,
without caring where in the hierarchy the instance variable
is defined.

9 Conclusion

In this paper, we took a daily problem of the industrial users
of Moose. After analysing it, we discover that this problem is

IWST’18, September 10—14th, 2018, Cagliari, Italy

not only present in Moose, but Moose is an excellent subject
to resolve it.

We presented a solution using Slots to improve the mem-
ory footprint of an already developed application minimizing
the set of required changes.

Our solution presents an excellent result in reducing the
memory footprint, although it presents an execution penalty.
Even though this execution penalty does not affect the nor-
mal use of the application. Moreover, it allows us to load
FAMIX models that previously were impossible because of
its size.

As a future work, we plan to continue analysing different
strategies to achieve similar solutions and different imple-
mentations of slots that improve the existing applications
minimizing the need for boilerplate code.

Acknowledgements

This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020. Also, we will like to thank the
collaboration of Pavel Krivanek, Guillaume Larcheveque and
Benoit Verhaeghe who provide us with MSE models and the
descriptions of their experiences using Moose.

References

[1] Clément Béra. 2016. A low Overhead Per Object Write Barrier for the
Cog VM. In International Workshop on Smalltalk Technologies IWST 16.
Prague, Czech Republic. https://doi.org/10.1145/2991041.2991063
Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. 2009. Pharo by Example. Square
Bracket Associates, Kehrsatz, Switzerland. 333 pages. http://rmod.inria.
fr/archives/books/Blac09a-PBE1-2013-07-29.pdf

Paul Butterworth, Allen Otis, and Jacob Stein. 1991. The GemStone
object database management system. Commun. ACM 34, 10 (1991),
64-77. https://doi.org/10.1145/125223.125254

Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. 2001. FAMIX
2.1 — The FAMOOS Information Exchange Model. Technical Report.
University of Bern.

Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, Andre Caval-
cante Hora, Jannik Laval, and Tudor Girba. 2011. MSE and FAMIX 3.0:
an Interexchange Format and Source Code Model Family. Technical Re-
port. RMod - INRIA Lille-Nord Europe. http:/rmod.inria.fr/archives/
reports/Ducal1c-Cutter-deliverable22-MSE-FAMIX30.pdf
Stéphane Ducasse, Tudor Girba, Michele Lanza, and Serge Demeyer.
2005. Moose: a Collaborative and Extensible Reengineering En-
vironment. In Tools for Software Maintenance and Reengineering.
Franco Angeli, Milano, 55-71. http://scg.unibe.ch/archive/papers/
Duca05aMooseBookChapter.pdf

Urs Holzle and David Ungar. 1994. A Third-generation SELF Implemen-
tation: Reconciling Responsiveness with Performance. SIGPLAN Not.
29, 10 (Oct. 1994), 229-243. https://doi.org/10.1145/191081.191116
Mariano Martinez Peck, Noury Bouragadi, Marcus Denker, Stéphane
Ducasse, and Luc Fabresse. 2011. Efficient Proxies in Smalltalk. In
Proceedings of ESUG International Workshop on Smalltalk Technologies
(IWST’11). Edinburgh, Scotland. https://doi.org/10.1145/2166929.
2166937

Eliot Miranda and Clément Béra. 2015. A Partial Read Barrier for Effi-
cient Support of Live Object-oriented Programming. In International

10

[10]

(1]

[12]

[13]

[14]

Pablo Tesone, Santiago Bragagnolo, Marcus Denker, and Stéphane Ducasse

Symposium on Memory Management (ISMM °15). Portland, United
States, 93-104. https://doi.org/10.1145/2754169.2754186

R. W. Schmidt. 1997. Dynamically Extensible Objects in a Class-Based
Language. In Proceedings of the Tools-23: Technology of Object-Oriented
Languages and Systems (TOOLS ’97). IEEE Computer Society, Wash-
ington, DC, USA, 294-. http://dl.acm.org/citation.cfm?id=832250.
832649

Manuel Serrano. 1999. Wide classes. In Proceedings ECOOP 99 (LNCS),
R. Guerraoui (Ed.), Vol. 1628. Springer-Verlag, Lisbon, Portugal, 391-
415. http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/1628/16280391.
pdf

Dave Thomas and Kent Johnson. 1988. Orwell — A Configuration
Management System for Team Programming. In Proceedings of the
Object-Oriented Programming, Systems, Languages & Applications, ACM
SIGPLAN Notices (OOPSLA’88), Vol. 23. 135-141.

Toon Verwaest, Camillo Bruni, Mircea Lungu, and Oscar Nierstrasz.
2011. Flexible object layouts: enabling lightweight language ex-
tensions by intercepting slot access. In Proceedings of 26th Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA °11). ACM, New York, NY, USA, 959-972.
https://doi.org/10.1145/2048066.2048138

Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin
Chen, and Dawn Wilkins. 2010. A Comparison of a Graph Database and
a Relational Database: A Data Provenance Perspective. In Proceedings
of the 48th Annual Southeast Regional Conference (ACM SE ’10). ACM,
New York, NY, USA, Article 42, 6 pages. https://doi.org/10.1145/
1900008.1900067

https://doi.org/10.1145/2991041.2991063
http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
https://doi.org/10.1145/125223.125254
http://rmod.inria.fr/archives/reports/Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf
http://rmod.inria.fr/archives/reports/Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
http://scg.unibe.ch/archive/papers/Duca05aMooseBookChapter.pdf
https://doi.org/10.1145/191081.191116
https://doi.org/10.1145/2166929.2166937
https://doi.org/10.1145/2166929.2166937
https://doi.org/10.1145/2754169.2754186
http://dl.acm.org/citation.cfm?id=832250.832649
http://dl.acm.org/citation.cfm?id=832250.832649
http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/1628/16280391.pdf
http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/1628/16280391.pdf
https://doi.org/10.1145/2048066.2048138
https://doi.org/10.1145/1900008.1900067
https://doi.org/10.1145/1900008.1900067

	Abstract
	1 Introduction
	2 Wasted Memory
	2.1 A Simple Example
	2.2 Moose
	2.3 Ad hoc Solutions

	3 Slots to the rescue
	3.1 Lazy Initialized Slot
	3.2 Nil Aware Slot
	3.3 Combining the Slots
	3.4 Using the Slots

	4 Implementation
	5 Results of Applying the solution
	6 Benefit of using our solution
	6.1 First Scenario: Single instance creation and modification
	6.2 Second Scenario: Memory Footprint

	7 Discussion
	8 Related Works
	9 Conclusion
	References

