Squeak3.7a-5526.1.image

AOStA

and some ideas

Marcus Denker
Software Composition Group
University of Berne

Sgueak3.7a-5526.1.image

Overview

Part |:

AOStA Revisited: A Short Overview
Part Il:

A Code Generator for AOStA
Part Ill:

Beyond Performance

Sgueak3.7a-5526.1.image

Part I: AOStA

- AOStA: Adaptive Optimizations for Smalltalk

- Profiled execution to identify hot spots

- Compiles to optimized bytecode

- Dynamic deoptimization (debugging)

- Written in Smalltalk

Sgueak3.7a-5526.1.image

More...

Profiled execution: two areas for |JIT-compiled methods

- The optimized area works as usual
- In the unoptimized area methods have a
counter for each send and backward branch

Collecting type information
- via Polymorphic Inline Caches
- need to be readable from Smalltalk

Optimizations:
e.g., Inlining
Specializations for known types

Sgueak3.7a-5526.1.image

Bytecode-to-Bytecode

Static w

Bytecode L| Single
Assignment

Form

Codegen

Sgueak3.7a-5526.1.image

Status

2003:

- Design

- Frontend: Bytecode transformed to SSA

- Middle: SSA Framework, sample optimizers
- For VisualWorks

2004:

- Backend: transformation out of SSA
- Simple Code Generator
- Done with Squeak

Sgueak3.7a-5526.1.image

Part Il: More about the backend

- Short introduction to SSA (Static Single Assigment)

- Two steps:
1) Deconstruction of SSA

2) Code generation

- Some examples

Sgueak3.7a-5526.1.image

SSA - Static Single Assigment Form

- SSA: Each Variable has one assignment

- If controll flow merges, we need to select the
variable from the path we came from

examplePhiSimple tla := 3
fe | if not (tla = 3) goto BB2
a := 3.
a=3 “////
ifTrue: [b := 1]
ifFalse: [b := 2]. P n
b toc =2 t2a := 1
\ zoto BE4
4
t2b := PHI(tZ2a, tZc)
s3a := t2b
~s3a

Sgueak3.7a-5526.1.image

SSA

- Very nice for many optimizations
- but: Code generation not possible directly
--> Need to remove virtual selector functions
(PHI-functions)
Two step code generation
1) Deconstruction of SSA

2) Code generation

Sgueak3.7a-5526.1.image

SSA Deconstruction

Canonical method:

al =1 az = 2 al =1 az
\ / a3 = al a3 = a2
a3 = PHI(al, a2)
Problems:

- Wrong after some optimizations

- Copies need to be removed

Sgueak3.7a-5526.1.image

Phi-Congruency Method

Method by Vugranam C. Sreedhar, Roy Dz-Ching Ju,
David M. Gillies, und Vatsa Santhanam.

Idea: Transform program that
all variables are the same in PHI:

al = PHI(al,al) H al = al

- Insert copies

- Renaming

Sgueak3.7a-5526.1.image

- Two step process:

insert copies if .
needed rename variables,

delete PHI.

TSSA » CSSA » non-SSA

- Nice properties:
- Without any optimizations, no copies are needed
- Simple heuristics for copy placement

Number of copies

canonical: ~16000
new: ~1000 (without Opt: A}

ENLUIG

Sgueak3.7a-5526.1.image

IRBulilder

Symbolic Assembler

Example:

| 1r aCompiledMethod |

ir := IRBuilder new
rargs: #(self);
pushLiteral: 1;
returnlop;
ir.
aCompiledMethod := 1r compiledMethod.

Execute:

aComplledMethod valueWithReceiver: nil arguments: #()

Install in the system:
Float addSelector: #test withMethod: aCompiledMethod.

Example

Sgueak3.7a-5526.1.image

Opt and SSA
deconstruction

ClosureCompiler

X/ E CompiledMethod @0

examplePhiSimple
| a b |
a = 3.
(a = 3)1ifTrue: [b := 1]
ifFalse: [b = 2].
“b
BB9: |
tla = 3.
if not (tla = 3:) goto
BB18]
BB15: |
t3a ;=1).
goto BB20] — Codegen
BB18: |
t3a = 2]
BB20: |
~t3a]

AOStA
BE9: [
tla.= 3.
if not (tla = 3) goto BB18]
BE15: [
t2a:= 1.
goto BB20]
BE1S: [
t2c := 2:]
BB20: [
t2b ;= PHI{t2a, t2c).
s3a .= t2b.
~s3al
(XI(E) CompiledMethod
self 89 =20= pushConstant; 3
all bytecodes &4 44 -1 40> storelntoTemp: 0
hr:‘inrr 12 =20= pushConstant: 3
literall
g 13 =B&=> send: =
10 14 =9A= jumpFalze; 18
11 15 =76 pushConstant: 1
12 16 <69 popintoTemp: 1
13 17 =91 = jumpTo:; 20
14 ul 18 T T mmchi T manctant. 7

@0

d

self valueWithReceiver:
arguments: #()

nil

Sgueak3.7a-5526.1.image

Part lll: TODO/ldeas

TODO... lots. e.g. dynamic deoptimization
Possible experiments:
-> AOStA on Squeak with Jitter
-> Does it make sense with just an interpreter?
-> Exupery as a backend

All these are related to perfomance.

Question: What else could be possible?

Sgueak3.7a-5526.1.image

Runtime Translation as a System Service

- Enables more late binding
Example:
- 1Vars are accessed via offsets

- offsets are calculated at compile time
- makes changes and experiments harder

- Make a MOP practical

- Allows a much simpler System

Sgueak3.7a-5526.1.image

MOPs and other strange stuff

MOP: Meta Object Protocol.

ldea: Provide an API for changing the language
semantics and implementation at runtime.

(e.g., meaning of inheritance)
For Squeak: MetaClassTalk

- Nice, but slow
- A runtime translator could regain performance

Example: ClassBoxes

Sgueak3.7a-5526.1.image

Two Kinds of Bytecode

"Image"level Vs. Interpreter Level

- Imagelevel bytecode can be simple:
=> No optimizations at all

- Imagelevel bytecode and interpreter bytecode
could even be different:
=> Latebinding of the execution format

- Why not just use the AST?

Sgueak3.7a-5526.1.image

"2 Worlds"

Software-Engineering Execution

- AST instead of Bytecod
Instead of Bytecode - bytecode or

- late bound binary
- no optimizations Translator| - optimized
- late binding

resolved

