Beyond Text - Methods As Objects u

UNIVERSITAT

© Marcus Denker




Software Composition Group
University of Berne

> Lead by Oscar Nierstrasz and Stephane Ducasse
> QOverall Focus: Software Evolution

> Two parts:
— Evolution of Existing Systems (Reengineering)
— Moose, CodeCrawler
— Language Design for enabling Evolution

— Tralits
— ClassBoxes

> Forward and Reverse engineering viewpoints
— We start to see many parallels / cross fertilization




Roadmap

> Reflective Systems
— Behavioral Reflection
— Squeak’s Reflective capabilties

> Methods in Squeak
— Methods as Objects
— Objects as Methods

> ByteSurgeon and Geppetto
— Usage
— Problems

> Beyond text

UNIVERSITAT




Reflection

> QObject oriented model of the system available inside the
system
— called “Introspection”
— Java

> Model is causally connected
— Changing this model changes the system
— called “Intercession”

> Reflection = Introspection + Intercession




Behavioral and Structural

> Structural reflection: changing structure

— Add / remove classes and methods
— Add / remove instance variables
— Change inheritance relationship

> Behavioral reflection: changing behavior
— What is inheritance?
— Hook into instance variable stores (e.g. persistence)

> Both are related
— change of structure changes behavior




Usage: Why Reflection ——

> Structural reflection
— Changing systems at runtime
— Powerful development environments (no edit-compile-run)
— Analysis (through introspection)

> Behavioral reflection
— Language experiments
— Debugging
— Dynamic analysis (tracing, visualization)
— New language features (e.g. persistence)




Squeak: A Reflective System

> Squeak: open source Smalltalk

— Classes and methods are objects
— Changing these objects changes the system (at runtime)

> API for

— adding / removing classes + methods
— adding / removing instance variables
— changing inheritance relationship




Squeak: Behavioral Reflection

> Behavioral Reflection: only by changing methods

> There is no API for introspection/intercession of
— Instance variable access
— Temp variable access
— Message sending
— Message lookup
— Method execution




Structural Reflection enables
Behavioral Reflection

> General: Change of structure changes behavior

> We can use the structural reflection API to provide
behavioral reflection

— Methods are objects

— We can just replace them with our version that does what we
want




Behavioral Reflection: Howto?

UNIVERSITAT

> Method Wrappers (e.g. used by AspectS)
— Gives access to before / after of method execution
> Squeak’s Objects-As-Methods

— we can install any object as a method that implements a simple
protocol (#run:with:in)

— used by ClassBoxes, FacetS
— reifies method execution

> Transformation of text / AST / Bytecode




ByteSurgeon

> Framework for editing bytecode for Squeak
— Like Javasist in Java, but:

> Uses structural reflection to transform at runtime
— Simple model: Inline code before / after a bytecode
— Inlined code is normal smalltalk code
— Not much knowledge about bytecode needed




Example for Bytesurgeon |

> Goal: Logging Message send

example
self test.

:>

example
Transcript show: ‘sending #test’.
self test.




b

u

Example for Bytesurgeon Il b

UNIVERSITAT
BERN

> (@Goal: Log message send
> with ByteSurgeon:

(Example>>#example) instrumentSend: [:send |
send insertBefore:

‘Transcript show: ‘’sending #test’'’ ‘.




Uses of ByteSurgeon at SCG

> |Implementation of fast MethodWrapper
— 35 lines of code

> Trace library for runtime tracing
> Back-In-Time Debugger

> Runtime analysis: test coverage

UNIVERSITAT




Problems of ByteSurgeon

> Performance

— Faster then code / AST
— But installation takes some time

> Abstractions too low level
— Bytecode

— We want to abstract away from bytecode and talk about
instance variable access, message sending...

— Not a good meta model




Geppetto

Framework for behavioral reflection

Build on top of ByteSurgeon
— but abstracts from bytecode

> Fine grained scoping of reflection
— spatial (where? and what?)
— temporal (when?)

> Based on the Reflex Model (Eric Tanter)

UNIVERSITAT




Geppetto: Big Picture

AOP Tracer

Geppetto

ByteSurgeon

Squeak

UNIVERSITAT




b

u

Geppetto: Modeli :

UNIVERSITAT
BERN

metalevel

/ O metaobjects @
'

——— link

activation condition ——— T

X
base level / &

Reflex

hooksets (Tanter OOPSLA 03)




Problem with Bytecode in Geppetto

> Bytecode is not a good meta model

> Lots of management infrastructure is needed

— Hook composition
— Synthesised elements (hooks) vs. original code
— Mapping to source elements

> Bytecode is optimized
— e.g. no ifTrue:




Beyond Text: A Meta Model for
Methods

> We need a high-level meta model for methods

> This model needs to be causally connected
— edit the model --> edit the system

> Text and Byte- (Binary-) code generated on demand




Beyond Text: A Meta Model for
Methods

> Structure of method is implicit
— Compile text (to AST)
— Decompile bytecode (to IR or AST)

> Both text and bytecode are pretty low level

> Not suited for being the main representation
— How to annotate text?
— How to tag synthesised bytecode?

> Possible Model: AST




Many users

Aspects
Refactoring JIT

SN

Editor « —
(pretty printer) \ Pluggable
/ \ Typesystem

Annotations

Method
Meta Model

Reflection




Explorations...

> Annotation framework
— Nodes can be annotated
— We can have any object as a (non-textual) annotation

replace ByteSurgeon by AST based transformer
|dea: Behavioral Reflection with Annotations
> (Combine with AspectS for dynamic Aspects

UNIVERSITAT




Conclusion

> We have had a quick intro in Reflection
— Squeak and how it enables reflection

> How to realize behavioral reflection

— Bytesurgeon and Geppetto
— Problems

> We need a Meta Model for Methods

UNIVERSITAT




b

u

License ,,

UNIVERSITAT
BERN

> http://creativecommons.org/licenses/by-sa/2.5/

@creative
‘Ecommons

Attribution-éhéreAlike 25
You are free:

+ to copy, distribute, display, and perform the work
+ to make derivative works
+ to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.

@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.




