
© Marcus Denker

Sub-Method Reflection

Marcus Denker
Stéphane Ducasse
Adrian Lienhard
Philippe Marschall

© Marcus Denker

Roadmap

> Structural Reflection and Sub-Method Reflection
> Persephone: Sub-Method Reflection for Smalltalk
> Example I: Instrumentation Framework
> Example II: Pluggable Type-System
> Benchmarks + Memory
> Future Work

© Marcus Denker

Structural Reflection

> Structure modeled as objects

— e.g. Classes, methods
— Causally connected

> Uses:
— Development environments
— Language extensions and experiments

© Marcus Denker

Methods and Reflection

> Method are Objects
— e.g in Smalltalk

> No high-level model for sub-method elements
— Message sends
— Assignments
— Variable access

> Structural reflection stops at the granularity of methods

© Marcus Denker

Sub-Method Reflection

> Many tools work on sub method level
— Profiler, Refactoring Tool, Debugger, Type Checker

> Communication between tools needed
— example: Code coverage

> All tools use different representations
— Tools are harder to build
— Communication not possible

© Marcus Denker

Existing Method Representations

> Existing representations for Methods

— Text

— Bytecode

— AST

© Marcus Denker

Requirements

> Causal Connection

> Abstraction Level

> Extensibility

> Persistency

> Size and Performance

© Marcus Denker

Text

> Low level abstraction
— String of Characters

> Not causally connected
— Need to call compiler

© Marcus Denker

Bytecode

> Low level abstraction
— Array of Integers

> Missing extensibility
— e.g. for tools

> Mix of base- and meta-level code
— Problems with synthesized code when changing code
— Examples: AOP point-cut residues, reflection hooks

© Marcus Denker

Abstract Syntax Tree

> Not causally connected
— Need to call compiler

> Not extensible
— Fixed set of codes, no way to store meta data

> Not persistent
— Generated by compiler from text, never stored

© Marcus Denker

Solution: Reflective Methods

> Annotated, persistent AST
> Bytecode generated on demand and cached

:ReflectiveMethod

annotation

#(12 13 45 38 98 128
84 72 42 77 22 28 59

32 7 49 51 87 64)

:CompiledMethod

compiledMethod

reflectiveMethod
annotation

Tools VM

© Marcus Denker

Persephone

> Implementation of Reflective Methods for Squeak
Smalltalk

> Smalltalk Compiler generates Reflective Methods
— Translated to Bytecode on demand

> Open Compiler: Plugins
— Called before code generation
— Transform a copy of the AST

© Marcus Denker

Requirements revisited

> Abstraction Level OK

> Causal Connection OK

> Extensibility OK

> Persistency OK

> Size and Performance OK

© Marcus Denker

Reflective Methods: Annotations

> Source visible annotations
— extended Smalltalk syntax

> Source invisible annotations
— Reflective API
— Can reference any object

> Every node can be annotated
> Semantics: Compiler Plugins

(9 raisedTo: 10000) <:evaluateAtCompiletime:>

© Marcus Denker

Example I: Instrumentation

Original Code Instrumented Code

a := 1 max: 3 a := 1 max: 3.

AssignmentCounter inc.

> Goal: Code Instrumentation
— Similar to Javassist, but at runtime
— Insert code before/after, replace
— Access to runtime data (e.g. receiver of send)

© Marcus Denker

Instrumentation using Annotations

after

#[10 125 55 33 55 00 80 90 33]

#[10 125 55 00 80 90]
original
bytecode

instrumented
bytecode

AST
Annotation

> On demand
code generation
— Faster!

> Better code
— No preamble

code to access
data on stack

> Annotations are
metadata
— Original code

untouched

© Marcus Denker

Example II: Pluggable Type-System

> Example for textual annotations

bitFromBoolean: aBoolean <:type: Boolean :>
^ (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

> Optional, pluggable type-system
> Types stored as annotations in the Reflective Methods

© Marcus Denker

Performance

Caching scheme Runtime

unmodified Squeak 6.9 seconds

Persephone, no cache >1 hour

Persephone, cache 6.9 seconds

Squeak tinyBenchmarks

© Marcus Denker

Memory

number of classes memory

Squeak 3.9 2040 15.7 MB

Persephone
no reflective methods

2224 20 MB

Persephone
reflective methods

2224 123 MB

© Marcus Denker

Future Work

> Optimize Size of AST Representation
— Simpler AST
— AST Compression

> Behavioral Reflection
— Implement Reflex model of partial behavioral reflection

> Beyond Text
— Store only AST (no text)
— Build text from annotated AST

© Marcus Denker

Conclusion

> Motivated the need for Reflective Methods
> Implementation: Persephone
> Examples

— Instrumentation framework
— Pluggable type-system

> Benchmarks / Memory

© Marcus Denker

Conclusion

> Motivated the need for Reflective Methods
> Implementation: Persephone
> Examples

— Instrumentation framework
— Pluggable type-system

> Benchmarks / Memory

Questions?

