8. Static Single Assignment Form

Marcus Denker
Roadmap

> Static Single Assignment Form (SSA)
> Converting to SSA Form
> Examples
> Transforming out of SSA
Static Single Assignment Form

> Goal: simplify procedure-global optimizations

> Definition:

Program is in SSA form if every variable is only assigned once
Why Static?

- Why Static?
 - We only look at the static program
 - One assignment per variable in the program

> At runtime variables are assigned multiple times!
Example: Sequence

> Easy to do for sequential programs:

Original

\[
\begin{align*}
 a &:= b + c \\
 b &:= c + 1 \\
 d &:= b + c \\
 a &:= a + 1 \\
 e &:= a + b
\end{align*}
\]

SSA

\[
\begin{align*}
 a_1 &:= b_1 + c_1 \\
 b_2 &:= c_1 + 1 \\
 d_1 &:= b_2 + c_1 \\
 a_2 &:= a_1 + 1 \\
 e_1 &:= a_2 + b_2
\end{align*}
\]
Example: Condition

> Conditions: what to do on control-flow merge?

Original

\[
\begin{align*}
\text{if } B \text{ then} \\
a &:= b \\
\text{else} \\
a &:= c \\
\text{end} \\
\ldots \ a \ldots
\end{align*}
\]

SSA

\[
\begin{align*}
\text{if } B \text{ then} \\
a_1 &:= b \\
\text{else} \\
a_2 &:= c \\
\text{End} \\
\ldots \ a? \ldots
\end{align*}
\]
Solution: Φ-Function

> Conditions: what to do on control-flow merge?

Original

```plaintext
if B then
  a := b
else
  a := c
end
... a ...
```

SSA

```plaintext
if B then
  a_1 := b
else
  a_2 := c
End
a_3 := \Phi(a_1, a_2)
... a_3 ...
```
The \(\Phi \)-Function

> \(\Phi \)-functions are always at the beginning of a basic block

> Select between values depending on control-flow

> \(a_1 := \Phi(a_1 \ldots a_k) \): the block has \(k \) preceding blocks

\textit{PHI-functions are all evaluated simultaneously.}
SSA and CFG

- SSA is normally done for control-flow graphs (CFG)

- Basic blocks are in 3-address form
> A CFG models *transfer of control* in a program
 — nodes are *basic blocks* (straight-line blocks of code)
 — edges represent *control flow* (loops, if/else, goto …)
SSA: a Simple Example

if B then
 a1 := 1
else
 a2 := 2
End
a3 := PHI(a1,a2)
... a3 ...

Diagram:
- B
- a1 := 2
- a2 := 2
- a3 := PHI(a1,a2)
 ... a3 ...
Repeat: IR

- front end produces IR
- optimizer transforms IR to more efficient program
- back end transform IR to target code
SSA as IR

source code → frontend → optimizer (IR) → backend (IR) → machine code

GenSSA → OPT → Remove SSA → SSA → SSA

SSA

© Marcus Denker
Transforming to SSA

> Problem: Performance / Memory

 — Minimize number of inserted Φ-functions
 — Do not spend to much time

> Many relatively complex algorithms

 — We do not go too much into details
 — See literature!
Minimal SSA

> Two steps:
 — Place Φ-functions
 — Rename Variables

> Where to place Φ-functions?

> We want minimal amount of needed Φ
 — Save memory
 — Algorithms will work faster
Path Convergence Criterion

> There should be a Φ for a at node Z if:

1. There is a block X containing a definition of a.
2. There is a block Y ($Y \neq X$) containing a definition of a.
3. There is a nonempty path P_{xz} of edges from X to Z.
4. There is a nonempty path P_{yz} of edges from Y to Z.
5. Path P_{xz} and P_{yz} do not have any nodes in common other than Z.
6. The node Z does not appear within both P_{xz} and P_{yz} prior to the end (although it may appear in one or the other).
Iterated Path-Convergence

> Inserted Φ is itself a definition!

```
While there are nodes X,Y,Z satisfying conditions 1-5
    and Z does not contain a phi-function for a
  do
    insert PHI at node Z.
```

A bit slow, other algorithms used in practice
Example (Simple)

1. block X containing a definition of a
2. block Y (Y \(\neq \) X) containing a definition of a.
3. path \(P_{xz} \) of edges from X to Z.
4. path \(P_{yz} \) of edges from Y to Z.

5. Path \(P_{xz} \) and \(P_{yz} \) do not have any nodes in common other than Z.
6. The node Z does not appear within both \(P_{xz} \) and \(P_{yz} \) prior to the end.
Dominance Property of SSA

> Dominance: node D dominates node N if every path from the start node to N goes through D.

(“strictly dominates”: $D \neq N$)

Dominance Property of SSA:

1. If x is used in a Phi-function in block N, then the definition of x dominates every predecessor of N.
2. If x is used in a non-Phi statement in N, then the definition of x dominates N

“Definition dominates use”
Dominance and SSA Creation

> Dominance can be used to efficiently build SSA

> ϕ-Functions are placed in all basic blocks of the Dominance Frontier.

> **Dominance Frontier:** the set of all nodes N such that D dominates an immediate predecessor of N but does not strictly dominate N.
Dominance and SSA Creation

DF(D) = the set of all nodes N such that D dominates an immediate predecessor of N but does not strictly dominate N.

Intuition: Nodes at the border of a region of dominance
Dominance and SSA Creation

DF(D) = the set of all nodes N such that D dominates an immediate predecessor of N but does not strictly dominate N.
Dominance and SSA Creation

\[DF(D) = \text{the set of all nodes } N \text{ such that } D \text{ dominates an immediate predecessor of } N \text{ but does not strictly dominate } N. \]

Intuition:

Nodes at the border of a region of dominance
Dominance and SSA Creation
Dominance and SSA Creation

5 Dominates all nodes in the gray area
Targets of edges from the dominates by 5 to the region not strictly dominated by 5.

DF(5) = \{4, 5, 12, 13\}
Simple Example

DF(B1)=
DF(B2)=
DF(B3)=
DF(B4)=

B

B1

B2

a := 1

B3

a := 2

a

B4
Simple Example

DF(B1)={?}
DF(B2)=
DF(B3)=
DF(B4)=

DF(B1)={?}
DF(B2)=
DF(B3)=
DF(B4)=
Simple Example

DF(B1) = {}
DF(B2) =
DF(B3) =
DF(B4) =

 SSA
Simple Example

DF(B1)={}
DF(B2)={?}
DF(B3)=
DF(B4)=

B

B1

B2

a := 1

B3

a := 2

B4

a

SSA

© Marcus Denker
Simple Example

DF(B1) = {}
DF(B2) = {B4}
DF(B3) =
DF(B4) =
Simple Example

DF(B1)=\{
DF(B2)={B4}
DF(B3)={B4}
DF(B4)=

Simple Example

DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}

SSA
DF(B1)={}
DF(B2)={B4}
DF(B3)={B4}
DF(B4)={}

PHI-Function needed in B4 (for a)
Properties of SSA

> Simplifies many optimizations
 — Every variable has only one definition
 — Every use knows its definition, every definition knows its uses
 — Unrelated variables get different names

> **Examples:**
 — Constant propagation
 — Value numbering
 — Invariant code motion and removal
 — Strength reduction
 — Partial redundancy elimination

Next Week!
SSA in the Real World

> Invented end of the 80s, a lot of research in the 90s

> Used in many modern compilers

 — ETH Oberon 2
 — LLVM
 — GNU GCC 4
 — IBM Jikes Java VM
 — Java Hotspot VM
 — Mono
 — Many more…
Transforming out-of SSA

> Processor cannot execute Φ-Function

> How do we remove it?
Simple Copy Placement

1. \(a_1 := b \)
2. \(a_2 := 2 \)
3. \(a_3 := \text{PHI}(a_1, a_2) \)
 ... \(a_3 \)

1. \(a_1 := b \)
2. \(a_3 := a_1 \)
3. \(a_2 := 2 \)
4. \(a_3 := a_2 \)
5. ... \(a_3 \)
> Problems:
 — Copies need to be removed
 — Wrong in some cases after reordering of code
Φ-Congruence

Idea: transform program so that all variables in $Φ$ are the same:

$$a_1 = Φ(a_1, a_1) \quad ---> \quad a_1 = a_1$$

> Insert Copies
> Rename Variables
Φ-Congruence: Definitions

Φ-connected(x):

\[a_3 = \Phi(a_1, a_2) \]
\[a_5 = \Phi(a_3, a_4) \]

--> a1, a4 are connected

Φ-congruence-class:
Transitive closure of Φ-connected(x).
Φ-Congruence Property

Φ-congruence property:

All variables of the same congruence class can be replaced by one representative variable without changing the semantics.

SSA without optimizations has Φ-congruence property

Variables of the congruence class never live at the same time (by construction)
A variable v is \textit{live} on edge e if there is a path from e to a use of v not passing through a definition of v.

\begin{itemize}
 \item \textbf{a}\hspace{1cm}a:= 0
 \item \textbf{b}\hspace{1cm}b := a + 1
 \item \textbf{c}\hspace{1cm}c := c + b
 \item \textbf{a}\hspace{1cm}a := b * 2
 \item \textbf{a < N}\hspace{1cm}a < N
 \item \textbf{return c}
\end{itemize}

\begin{itemize}
 \item \textbf{b}\hspace{1cm}a:= 0
 \item \textbf{b}\hspace{1cm}b := a + 1
 \item \textbf{c}\hspace{1cm}c := c + b
 \item \textbf{a}\hspace{1cm}a := b * 2
 \item \textbf{a < N}\hspace{1cm}a < N
 \item \textbf{return c}
\end{itemize}

\begin{itemize}
 \item \textbf{c}\hspace{1cm}a:= 0
 \item \textbf{b}\hspace{1cm}b := a + 1
 \item \textbf{c}\hspace{1cm}c := c + b
 \item \textbf{a}\hspace{1cm}a := b * 2
 \item \textbf{a < N}\hspace{1cm}a < N
 \item \textbf{return c}
\end{itemize}

\textit{a and b are never live at the same time, so two registers suffice to hold a, b and c.}
Interference

A variable v is *live* on edge e if there is a path from e to a use of v not passing through a definition of v.

a, c live at the same time: interference
Φ-Removal: Big picture

CSSA: SSA with Φ-congruence-property.
 - directly after SSA generation
 - no interference

TSSA: SSA without Φ-congruence-property.
 - after optimizations
 - interference

1. Transform TSSA into CSSA (fix interference)
2. Rename Φ-variables
3. Delete Φ
Example: Problematic case

X2 and X3 interfere

Solution: Break up

\[x_1 = \]

\[x_2 = \text{phi}(x_1, x_3) \]
\[x_3 = x_2 + 1 \]

\[y = \text{phi}(x_1, x_3) \]
\[x_2 = y \]
\[x_3 = x_2 + 1 \]
SSA and Register Allocation

> Idea: remove Φ as late as possible

> Variables in Φ-function never live at the same time!
 — *Can be stored in the same register*

> Do register allocation on SSA!
SSA: Literature

Books:
- SSA Chapter in Appel
 Modern Compiler Impl. In Java
- Chapter 8.11 Muchnik:
 Advanced Compiler Construction

SSA Creation:
Cytron et. al: *Efficiently computing Static Single Assignment Form and the Control Dependency Graph* (TOPLAS, Oct 1991)

PHI-Removal: Sreedhar et at. *Translating out of Static Single Assignment Form* (LNCS 1694)
Summary

> SSA, what it is and how to create it
 — Where to place Φ-functions?

> Transformation out of SSA
 — Placing copies
 — Remove Φ

Next Week: Optimizations
What you should know!

- When a program has SSA form.
- What is a Φ-function.
- When do we place Φ-functions
- How to remove Φ-functions
Can you answer these questions?

✎ Why can we not directly generate executable code from SSA?
✎ Why do we use 3-address code and CFG for SSA?
License

> http://creativecommons.org/licenses/by-sa/2.5/

You are free:
- to copy, distribute, display, and perform the work
- to make derivative works
- to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.