
© Marcus Denker

Reflection

Marcus Denker
denker@iam.unibe.ch

Universität Bern

mailto:denker@iam.unibe.ch
mailto:denker@iam.unibe.ch

© Marcus Denker

Roadmap

> Introduction: Reflection
> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection

© Marcus Denker

Roadmap

> Introduction: Reflection
> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection

© Marcus Denker

System

Definition:

A computational system is a computer-based system
whose purpose is to answer questions and/or support
actions about some domain.

(P. Maes, “Concepts and Experiments in
Computational Reflection," Proceedings of OOPLA 87)

© Marcus Denker

Causally Connected

Definition:

A system is said to be causally connected to its domain if
the internal structures and the domain they represent are
linked in such a way that if one of them changes, this leads
to a corresponding effect of the other.

 (Patty Maes, OOPSLA 87)

© Marcus Denker

Reflective System

Definition:

A reflective system is a system which incorporates
causally connected structures representing (aspects of)
itself.

 (Patty Maes, OOPSLA 87)

© Marcus Denker

Introspection

> Introspection
— Self-representation can be queried

> Intercession
— Self-representation can be changed

Reflection = Introspection + Intercession

© Marcus Denker

Structure and Behavior

> Structural Reflection
— Concerned with static structure
— For example: packages, data-types, procedures

> Behavioral Reflection
— Concerned with execution
— For example: procedure execution, assignment, variable read

© Marcus Denker

Tower of Interpreters

> First studied for
procedural languages

> David A. Smith: 3Lisp

> Tower-of-Interpreters

> Theoretical. Slow!
User Program running a level 0

Interpreter at level 1

Interpreter at level 2

Interpreter at level 3

© Marcus Denker

Reflection and OOP

> A good match: self-representation build of objects
— Better then interpreter data-structures

> Language-based reflection
— Language entities represented as objects
— Meta-objects describe behavior of base level objects

> Structure: classes/methods are objects
> Behavior: meta-objects define behavior

— Example: meta-class defines method lookup

© Marcus Denker

Example: Java

> Structural introspection
— java.lang.reflect
— Query a model of the program (classes, protocols)

> Limited intercession
— No change of classes

> Limited behavioral reflection
— Wrappers on objects
— No way to intercept method calls, variable access

© Marcus Denker

Example: Squeak

> Squeak has support for reflection

> Structural reflection
— Classes / methods are objects
— Can be changed at runtime

> Behavioral reflection
— Current execution reified (thisContext)
— #doesNotUnderstand / MethodWrappers

© Marcus Denker

Can we do better?

> Structural Reflection stops at method level
— Bytecode in the CompiledMethod: Numbers
— Text: Just a String, needs to be compiled

> Behavior hard coded in the Virtual Machine
— Message Sending
— Variable Access

> Both structural and behavioral reflection is limited
— We should do better!

© Marcus Denker

Roadmap

> Introduction: Reflection
> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection

© Marcus Denker

Structural Reflection

> Structure modeled as objects

— e.g. Classes, methods
— Causally connected

> Uses:
— Development environments
— Language extensions and experiments

© Marcus Denker

Methods and Reflection

> Method are Objects
— e.g in Smalltalk

> No high-level model for sub-method elements
— Message sends
— Assignments
— Variable access

> Structural reflection stops at the granularity of methods

© Marcus Denker

Sub-Method Reflection

> Many tools work on sub method level
— Profiler, Refactoring Tool, Debugger, Type Checker

> Communication between tools needed
— Example: Code coverage

> All tools use different representations
— Tools are harder to build
— Communication not possible

© Marcus Denker

Existing Method Representations

> Existing representations for Methods

— Text

— Bytecode

— AST

© Marcus Denker

Requirements

> Causal Connection

> Abstraction Level

> Extensibility

> Persistency

> Size and Performance

© Marcus Denker

Text

> Low level abstraction
— String of characters

> Not causally connected
— Need to call compiler

© Marcus Denker

Bytecode

> Low level abstraction
— Array of Integers

> Missing extensibility
— e.g. for tools

> Mix of base- and meta-level code
— Problems with synthesized code when changing code
— Examples: AOP point-cut residues, reflection hooks

© Marcus Denker

Abstract Syntax Tree

> Not causally connected
— Need to call compiler

> Not extensible
— Fixed set of codes, no way to store meta data

> Not persistent
— Generated by compiler from text, never stored

© Marcus Denker

Solution: Reflective Methods

> Annotated, persistent AST
> Bytecode generated on demand and cached

:ReflectiveMethod

annotation

#(12 13 45 38 98 128
84 72 42 77 22 28 59

32 7 49 51 87 64)

:CompiledMethod

compiledMethod

reflectiveMethod
annotation

Tools VM

© Marcus Denker

Persephone

> Implementation of Reflective Methods for Squeak

> Smalltalk compiler generates Reflective Methods
— Translated to bytecode on demand

> Open Compiler: Plugins
— Called before code generation
— Transform a copy of the AST

© Marcus Denker

Requirements revisited

> Abstraction Level OK

> Causal Connection OK

> Extensibility OK

> Persistency OK

> Size and Performance OK

© Marcus Denker

Annotations

> Source visible annotations
— extended Smalltalk syntax

> Source invisible annotations
— Reflective API
— Can reference any object

> Every node can be annotated
> Semantics: Compiler Plugins

(9 raisedTo: 10000) <:evaluateAtCompiletime:>

© Marcus Denker

Example: Pluggable Type-System

> Example for textual annotations

bitFromBoolean: aBoolean <:type: Boolean :>
^ (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

> Optional, pluggable type-system
> Types stored as annotations in the Reflective Methods

© Marcus Denker

Memory

number of classes memory

Squeak 3.9

Persephone
no reflective methods

Persephone
reflective methods

2040 15.7 MB

2224 20 MB

2224 123 MB

© Marcus Denker

Roadmap

> Introduction: Reflection in Squeak
> I. Sub-Method Structural Reflection
> II. Partial Behavioral Reflection

© Marcus Denker

Behavioral Reflection

> Reflect on the execution
— method execution
— message sending, variable access

> In Smalltalk
— No model of execution below method body
— message sending / variable access hard coded by VM
— #doesNotUnderstand / MethodWrappers

> Reflective capabilities of Smalltalk should be improved!

© Marcus Denker

MetaclassTalk

> Extends the Smalltalk metaclass model
— Similar to CLOS MOP

> Metaclass defines
— message lookup
— access to instance variables

> Problems:
— Reflection only controllable at class boundaries
— No fine-grained selection (e.g. single operations)
— Protocol between base and meta level is fixed

© Marcus Denker

Reflex: Partial Behavioral Reflection

> Hooksets: collection of operation occurrences
> Links

— Bind hooksets to meta-objects
— Define protocol between base and meta

> Goals
— Highly selective reification
— Flexible meta-level engineering

– Protocol specification
– Cross-cutting hooksets

activation

condition

hookset

metaobject

links

Tanter, OOPSLA03

© Marcus Denker

Example: Profiler

> Operation:
— Method execution (around)

> Hookset:
— All execution operations in a package

> Meta-object:
— A profiling tool activation

condition

hookset

metaobject

links

© Marcus Denker

Reflex for Squeak

> Partial Behavioral Reflection pioneered in Java
— Code transformation at load time
— Not unanticipated (itʼs Java...)

> Geppetto: Partial Behavioral Reflection for Smalltalk
— For Squeak 3.9 with Bytecode transformation

© Marcus Denker

Problems

> Annotation performance
— Decompile bytecode

> Execution performance
— Preambles for stack manipulation

> Low-level representation
— ifTrue:ifFalse:
— Blocks
— Global variables

© Marcus Denker

Method

Links as Annotations

Meta

Link

> Links can be annotations on the AST

© Marcus Denker

Properties

> Very fast annotations
— No decompile!

> On-the-fly code generation
— Only code executed gets generated

> Generated code is fast
— Better then working on bytecode level

© Marcus Denker

Demo

> Show Bounce Demo

© Marcus Denker

Reflectivity

> Prototype implementation in Squeak

— Sub-Method Structure
— Partial Behavioral Reflection

> Download:

http:/scg.unibe.ch/Research/Reflectivity

http://www.iam.unibe.ch/~scg/Research/Reflectivity
http://www.iam.unibe.ch/~scg/Research/Reflectivity

© Marcus Denker

Whatʼs next...

> Optimize Size of AST Representation
— Simpler AST
— AST Compression

> Beyond Text
— Store only AST (no text)
— Build text from annotated AST

© Marcus Denker

License

> http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

