

mailto:denker@iam.unibe.ch
mailto:denker@iam.unibe.ch

Roadmap

> |ntroduction: Reflection
> |. Sub-Method Structural Reflection
> ||. Partial Behavioral Reflection

Roadmap

> [ntroduction: Reflection
> |. Sub-Method Structural Reflection
> |l. Partial Behavioral Reflection

Reflection

¢ 008 S mal

Frem Samen) Y of T Novester DO [Lotedt o iote FORT] o0 S February 00T 0t L VM e

Change San LRSS T R B
Octe S Fetruory 207
Amter Morces Derher

ring s panipped, Bt o Rripgee. This
<8 oddes Stringeraipped (ortgimally from Duego Gomez Deck) and o test for wnripped/zipped

TS Orgeset |3 fautrd] 08 W8 uestion oF rigeed nrisoed Deeing In SAring, Int 1F there 1%
A2 peed, there hauld Do F21pped. M 1hare U8 e & test

1Mring seshades or COMrting’ stomp: ‘oge LL/IWE 1)
Tipped

Mreoe gratreos

SLrem » R AaryOr Teat S ream 00 AN e

gostrece e QIipSritedcrean on: streom
gestreem Aeataall: self

§streim (lone

SLreom reset.

* Mreem Comients

IMringTest sethodalor. “tests « Comwerting” st ‘™ o L b)
ALELPAr

ComgresLed

Compressed (= “halle’ 2looed
sell gasert | Commpressnd wigond = ‘Nella’) 0

L I Cotwwn \ Pan Tew : * TS 4 3

© Marcus Denker

Reflection

Program < Description

Reflection

Program

Description

Query and Change

Why!?

The Systems of the future...

> ...are getting larger and more complex
> ...are getting more and more dependent on each other

> The demands are changing

Examples of New Demands

> Dynamic Analysis
— Fine-grained selection
— Install / retract at runtime
— Complete system

> Development Environment

— Complete representation of the system
— Extensible

Definition:

A computational system is a computer-based system
whose purpose is to answer questions and/or support actions

about some domain.

(P. Maes, “Concepts and Experiments in Computational
Reflection,” Proceedings of OOPLA 87)

Causally Connected

Definition:

A system is said to be causally connected to its domain if
the internal structures and the domain they represent are linked
in such a way that if one of them changes, this leads to a
corresponding effect of the other.

(Patty Maes, OOPSLA 87)

Reflective System

Definition:

A reflective system is a system which incorporates causally
connected structures representing (aspects of) itself.

(Patty Maes, OOPSLA 87)

Introspection

Introspection

— Self-representation can be queried

Intercession
— Self-representation can be changed

Reflection = Introspection + Intercession

Structure and Behavior

> Structural Reflection
— Concerned with static structure
— For example: packages, data-types, procedures

> Behavioral Reflection
— Concerned with execution

— For example: procedure execution, assighment, variable read

Tower of Interpreters

First studied for
procedural languages

David A. Smith: 3Lisp Interpreter at level 3

Interpreter at level 2
Tower-of-Interpreters

Interpreter at level 1

Theoretical. Slow! |
User Program running a level O

Reflection and OOP

A good match: self-representation build of objects
— Better then interpreter data-structures

Language-based reflection
— Language entities represented as objects
— Meta-objects describe behavior of base level objects

Structure: classes/methods are objects

Behavior: meta-objects define behavior
— Example: meta-class defines method lookup

Example: Java

> Structural introspection
— java.lang.reflect
— Query a model of the program (classes, protocols)

> Limited intercession
— No change of classes

> Limited behavioral reflection

— Wrappers on objects
— No way to intercept method calls, variable access

Example: Squeak

Squeak has support for reflection

Structural reflection

— Classes / methods are objects
— Can be changed at runtime

Behavioral reflection
— Current execution reified (thisContext)
— #doesNotUnderstand / MethodVWrappers

Can we do better?

> Structural Reflection stops at method level

— Bytecode in the CompiledMethod: Numbers
— Text: Just a String, needs to be compiled

> Behavior hard coded in the Virtual Machine
— Message Sending
— Variable Access

> Both structural and behavioral reflection is limited
— We should do better!

Roadmap

> |ntroduction: Reflection
> [. Sub-Method Structural Reflection
> |l. Partial Behavioral Reflection

Structural Reflection

> Structure modeled as objects

— e.g. Classes, methods
— Causally connected

> Uses:

— Development environments
— Language extensions and experiments

Methods and Reflection

Method are Objects

— e.g in Smalltalk

No high-level model for sub-method elements
— Message sends

— Assignments

— Variable access

Structural reflection stops at the granularity of methods

Sub-Method Reflection

Many tools work on sub method level
— Profiler, Refactoring Tool, Debugger, Type Checker

Communication between tools needed
— Example: Code coverage

All tools use different representations
— Tools are harder to build

— Communication not possible

Existing Method Representations

> Existing representations for Methods

— Text

— Bytecode

— AST

Requirements

> Causal Connection
> Abstraction Level
> Extensibility

> Persistency

> Size and Performance

Text

> Low level abstraction
— String of characters

> Not causally connected
— Need to call compiler

Bytecode

Low level abstraction
— Array of Integers

Missing extensibility
— e.g.for tools

Mix of base- and meta-level code
— Problems with synthesized code when changing code
— Examples: AOP point-cut residues, reflection hooks

Abstract Syntax Tree

Not causally connected
— Need to call compiler

Not extensible

— Fixed set of codes, no way to store meta data

Not persistent
— Generated by compiler from text, never stored

Solution: Reflective Methods

> Annotated, persistent AST
> Bytecode generated on demand and cached

:ReflectiveMethod :CompiledMethod

compiledMethod
>

#(12 13 4538 98 128
reflectiveMethod 84 72 42 77 22 28 59
< 32 7 49 51 87 64)

A

VM

4

p—

Persephone

Implementation of Reflective Methods for Squeak

Smalltalk compiler generates Reflective Methods
— Translated to bytecode on demand

Open Compiler: Plugins
— Called before code generation
— Transform a copy of the AST

Requirements revisited

Abstraction Level OK
Causal Connection OK
Extensibility OK
Persistency OK

Size and Performance OK

Annotations

Source visible annotations
— extended Smalltalk syntax

(9 raisedTo: 10000) <:evaluateAtCompiletime:>

Source invisible annotations

— Reflective API
— Can reference any object

Every node can be annotated

Semantics: Compiler Plugins

Example: Pluggable Type-System

> Example for textual annotations

bitFromBoolean: aBoolean <:type: Boolean :>
A (aBoolean ifTrue: [1] ifFalse: [0]) <:type: Integer :>

> QOptional, pluggable type-system
> Types stored as annotations in the Reflective Methods

number of classes

memory

Squeak 3.9

15.7 MB

Persephone

no reflective
methods

20 MB

Persephone
reflective methods

Roadmap

> Introduction: Reflection in Squeak
> |. Sub-Method Structural Reflection
> [l. Partial Behavioral Reflection

Behavioral Reflection

> Reflect on the execution

— method execution
— message sending, variable access

> |n Smalltalk
— No model of execution below method body

— message sending / variable access hard coded by VM
— #doesNotUnderstand / MethodWrappers

> Reflective capabilities of Smalltalk should be improved!

MetaclassTalk

> Extends the Smalltalk metaclass model
— Similar to CLOS MOP

> Metaclass defines
— message lookup
— access to instance variables

> Problems:
— Reflection only controllable at class boundaries
— No fine-grained selection (e.g. single operations)
— Protocol between base and meta level is fixed

Reflex: Partial Behavioral Reflection

> Hooksets: collection of operation occurrences
> Links

— Bind hooksets to meta-objects
— Define protocol between base and meta

metaobject
> Goals

— Highly selective reification ' activation
condition

— Flexible meta-level engineering
— Protocol specification x XN /0 hookset

— Cross-cutting hooksets

Tanter, OOPSLAO3

Example: Profiler

Operation:
— Method execution (around)

Hookset:
— All execution operations in a package

. metaobject
Meta-object:

— A profiling tool iNKS --rerzzrnone — activation
condition

X X / hookset

Reflex for Squeak

> Partial Behavioral Reflection pioneered in Java
— Code transformation at load time
— Not unanticipated (it’s Java...)

> Geppetto: Partial Behavioral Reflection for Smalltalk
— For Squeak 3.9 with Bytecode transformation

Problems

> Annotation performance
— Decompile bytecode

> Execution performance
— Preambles for stack manipulation

> Low-level representation

— ifTrueifFalse:
— Blocks
— Global variables

Links as Annotations

> Links can be annotations on the AST

Method

N\

Properties

Very fast annotations
— No decompile!

On-the-fly code generation
— Only code executed gets generated

Generated code is fast
— Better then working on bytecode level

Demo

> Show Bounce Demo

Reflectivity

Prototype implementation in Squeak

— Sub-Method Structure
— Partial Behavioral Reflection

Download:

http:/scg.unibe.ch/Research/Reflectivity

http://www.iam.unibe.ch/~scg/Research/Reflectivity
http://www.iam.unibe.ch/~scg/Research/Reflectivity

Questions

License

> http://creativecommons.org/licenses/by-sa/2.5/

@creative
—commons

Attribution-ShareAlike 2.5

You are free:

+ to copy, distribute, display, and perform the work
+ to make derivative works

+ to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.

@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

