
Pharo: Syntax in a
Nutshell
S. Ducasse and M. Denker
http://www.pharo-project.org

http://www.pharo-project.org
http://www.pharo-project.org

No constructors

No types declaration

No interfaces

No packages/private/protected

No parametrized types

No boxing/unboxing

And really powerful

Less is better

Objects are instances of Classes

Objects are instances of Classes

(10@200)

Objects are instances of Classes

(10@200) class

Objects are instances of Classes

(10@200) class

Point

Classes are objects too

Classes are objects too

Point selectors

Classes are objects too

Point selectors

> an IdentitySet(#eightNeighbors #+ #isZero
#sortsBefore: #degrees #printOn: #sideOf:
#fourNeighbors #hash #roundUpTo: #min: #min:max:
#max #adaptToCollection:andSend: #quadrantOf:

Classes are objects too

Point instVarNames

Classes are objects too

Point instVarNames

 >#('x' 'y')

Methods are public

Instance variables are protected

Single Inheritance

Single Inheritance

Object subclass: #Point

	 instanceVariableNames: 'x y'

	 classVariableNames: ''

	 category: 'Graphics-Primitives'

Complete Syntax on a PostCard
exampleWithNumber: x

“A method that has unary, binary, and key word messages, declares arguments and
temporaries (but not block temporaries), accesses a global variable (but not and
instance variable), uses literals (array, character, symbol, string, integer, float), uses the
pseudo variable true false, nil, self, and super, and has sequence, assignment, return
and cascade. It has both zero argument and one argument blocks.”

	 |y|

 true & false not & (nil isNil) ifFalse: [self halt].

	 y := self size + super size.

 #($a #a ‘a’ 1 1.0)

do: [:each | Transcript show: (each class name); show: (each printString); show:
‘ ‘].

 ^ x < y

Language Constructs
	^	 return

 “ comments

 #	 symbol or array

 ‘ string

 []	 block or byte array

 .	 separator and not terminator (or namespace access in VW)

 ;	 cascade (sending several messages to the same instance)

 |	 local or block variable

Syntax
comment: “a comment”

character:	 $c $h $a $r $a $c $t $e $r $s $# $@

string: ‘a nice string’ ‘lulu’ ‘l’’idiot’

symbol:	 #mac #+

array:	 #(1 2 3 (1 3) $a 4)

byte array:	 #[1 2 3]

integer:	 1, 2r101

real:	 1.5, 6.03e-34,4, 2.4e7

float: 1/33

boolean: true, false

point:	 10@120

3 kinds of messages
Unary messages

Binary messages

Keywords messages

5 factorial
Transcript cr

3 + 4

3 raisedTo: 10 modulo: 5

Transcript show: 'hello world'

<= aPoint
! "Answer whether the receiver is neither
! below nor to the right of aPoint."

! ^ x <= aPoint x and: [y <= aPoint y]

A typical method in Point
Method name Argument Comment

Return Binary message
Keyword messageInstance variable

Block

(2@3) <= (5@6) true

• Anonymous method

• Passed as method argument or stored
• Functions
	 	 fct(x)= x*x+3, fct(2).

	 	 fct :=[:x| x * x + 3].
 fct value: 2

Blocks

Integer>>factorial
 | tmp |

tmp := 1.
2 to: self do: [:i| tmp := tmp * i]

#(1 2 3) do: [:each | each crLog]

Block usage

| p pen |
p := 100@100.
pen := Pen new.
pen up.
pen goto: p; down; goto: p+p

Statements and cascades

Temporary variables
Statement

Cascade

Control structures
Every control structure is realized by message sends

4 timesRepeat: [Beeper beep]

max: aNumber
! ^ self < aNumber
! ! ifTrue: [aNumber]
! ! ifFalse: [self]

Simple and elegant

