
Advanced Reflection:
MetaLinks

Marcus Denker, Inria

http://marcusdenker.de

Lecture at VUB Brussels, March 22, 2018

http://marcusdenker.de

What we know…

• Smalltalk is reflective

• Classes, Methods, Stack-Frames… are Objects

• Reflective API on all Objects

Take home message

• Reflection is based on the meta-class model, thus
inherently structural.

• Behavioural reflection limited to:

• Method lookup upon failure (doesNotUnderstand:

message)

• Current execution reified (thisContext)

61

Can we do better?

• A more fine-grained reflective mechanism seems to be
missing

• Let’s look again at a Method in the Inspector

Inspector on a Method

The AST

• AST = Abstract Syntax Tree

• Tree Representation of the Method

• Produced by the Parser (part of the Compiler)

• Used by all tools (refactoring, syntax-highlighting,…)

Smalltalk compiler parse: 'test ^(1+2)'

The Compiler

• Smalltalk compiler -> Compiler Facade

• Classes define the compiler to use

• You can override method #compiler

• Behind: Compiler Chain

The Compiler

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder IRBytecodeGenerator

AST

• RBMethodNode Root

• RBVariableNode Variable (read and write)

• RBAssignmentNode Assignment

• RBMessageNode A Message (most of them)

• RBReturnNode Return

AST: Navigation

• To make it easy to find and enumerate nodes, there are
some helper methods

• CompiledMethod has: #sendNodes,
#variableNodes, #assignmentNodes

• Every AST node has #nodesDo: and #allChildren

Inspect a simple AST

• A very simple Example

Smalltalk compiler parse: 'test ^(1+2)'

Integration

• Originally just internal to the compiler

• Pharo:

• send #ast to a method to get the AST

• Cached for persistency.

(Point>>#x) ast == (Point>>#x) ast
—> true

Wouldn’t it be nice..
• With the AST, wouldn’t it be nice if we could use this

structure for Behavioural Reflection?

• If we could somehow attach a “arrow to the code” that
points to a meta-object

test

 ^(1 + 2)

meta-object
for this Send

We have all pieces…

• We have the AST for each method

• It is quite simple

• We have a compiler in the system

• So this should be possible…

The MetaLink

• MetaLink points to metaObject

• Defines a selector to call

• And a control attribute: #before, #after, #instead

• Installed on a AST node:

link := MetaLink new
 metaObject: Halt;
 selector: #once;
 control: #before.

(Number>>#sin) ast link: link

The MetaLink
• Can be installed on any AST Node

• Methods will be re-compiled on the fly just before next
execution

• Link installation is very fast

• Changing a method removes all links from this method

• Managing link re-installation has to be done by the user

MetaLink: MetaObject

• MetaObject can be any object

• Even a Block: [Transcript show ‘hello’]

• Install on any Node with #link:

• de-install a link with #uninstall

MetaLink: Selector

• MetaLink defines a message send to the MetaObject

• #selector defines which one

• Default is #value

• Yes, a selector with arguments is supported

• We can pass information to the meta-object

MetaLink: Argument

• The arguments define which arguments to pass

• We support a number of reifications

Reifications

• Reifications define data to be passed as arguments

• Reify —> Make something into an object that is not one
normally

• Example: “All arguments of this message”

Reifications: examples

• All nodes: #object #context #class #node
#link

• Sends: #arguments #receiver #selector

• Method: #arguments #selector

• Variable: #value  

They are defined as subclasses of class RFReification

Reifications as MetaObject

• We support some special metaObjects:

• #node The AST Node we are installed on

• #object self at runtime

• #class The class the links is installed in

MetaLink: Condition

• We can specify a condition for the MetaLink

• Link is active if the condition evaluates to true

• We can pass reifications as arguments

link := MetaLink new
 metaObject: Halt;
 selector: #once;
 condition: [:object | object == 5] arguments: #(object).

(Number>>#sin) ast link: link.

MetaLink: control

• We can specify when to call the meta-object

• We support #before, #after and #instead

• The instead is very simple: last one wins

Example: Log

• We want to just print something to the Transcript

link := MetaLink new
metaObject: [Transcript show: 'Reached Here'].

(Number>>#sin) ast link: link

Recursion Problem

• Before we see more examples: There is a problem

• Imagine we put a MetaLink on some method deep in the
System (e.g new, +, do:).

• Our Meta-Object might use exactly that method, too

Endless Loop!!

Recursion Problem
• Solution: Meta-Level

• We encode the a level in the execution of the system

• Every Link Activation increases the level

• A meta-link is just active for one level. (e.g. 0)

link := MetaLink new
 metaObject: [Object new];
 level: 0.

(Behavior>>#new) ast link: link.

Example: Log

• Better use #level: 0

• Nevertheless: be careful! If you add this to method called
often it can be very slow.

link := MetaLink new
metaObject: [Transcript show: 'Reached Here’];

 level: 0.

Example: Counter
• In the Browser you can add a “counter” to the AST

• See class ExecutionCounter

install

link := MetaLink new
metaObject: self;
selector: #increase.

node link: link.

Example: Breakpoint

• “Add Breakpoint” in AST (Suggestions) Menu

• See class Breakpoint

• Break Once

• Conditional Break breakLink
 ^ MetaLink new

metaObject: Break;
selector: #break;
options: options

Example: WatchPoint

• Watchpoint: Record Value at a point in the AST

• Example: Watch event in WorldMorph>>#mouseDown:

Click on background
-> value recorded

Example: WatchPoint
• Implementation: class Watchpoint, method install

• example of a #after link with a condition

link := MetaLink new
metaObject: self;
selector: #addValue:;
arguments: #(value);
control: #after;
condition: [recording].

Example: Code Coverage
• Small Demo.

• Start with CoverageDemo new openWithSpec

Example: Code Coverage

• Example of a MetaLink with a #node MetObject

• Meta-Object is the node that the link is installed on

link := MetaLink new
metaObject: #node;
selector: #tagExecuted.

Interesting Properties
• Cross Cutting

• One Link can be installed multiple times

• Over multiple methods and even Classes

• And across operations (e.g., Send and Assignment) as
long as all reifications requested are compatible

• Fully Dynamic: Links can be added and removed at runtime

• Even by the meta-object of another meta-link!

Limitations
• Better use Pharo7 (we are improving it still)

• Still some bugs with #after on MethodNode

• Loops: next execution of a method. Need to restart long
running loops (no on-stack replacement).

• Keep in mind: next metaLink taken into account for next
method activation

• Take care with long running loops!

Help Wanted

• We are always interested in improvements!

• Pharo7 is under active development.

• Pull Requests Welcome!

