Block Closures

Marcus Denker, Inria Evref

It looks so simple

[1 + 2] wvalue

e Block of code

* |tis an object!

* [] creates the object

e #value evaluates it

It looks so simple

[1 + 2] wvalue

Is it not just a wrapper around a method implementing
#value?

But 1t I1s not

| temp myBlock |

temp := 1.
myBlock := [1 + temp].
A myBlock

* The block can access temps from the outer method (or block)
* The block could access self and ivars

e the block can survive the execution of the method where the
temp is defined

A block is code

e Thus: is not just a method?
* |ndeed: CompiledBlock
e Shares the Superclass with CompileMethod
e Very similar: CompiledMethodLayout
 Bytecode

e [iterals

Lets look at the Bytecode

 |ets look at a simple method with a simple block:

myMethod

A1 + 2]

Bock creation

e CompiledBlock instance is part of the literals

* A bytecode creates an instance of FullBlockClosure
e this happens at runtime (!)
e When the [] is evaluated

e But why?

Creation vs Activation

 This is a bit hard to wrap your head around, thus we
repeat:

Block Creation: VM creates instance
of FullBlockClosure

aBlock wvalue

Block Activation: the VM executes the CompledBlock

Excursion: Local Vars

* |Imagine a method with local variables

| templ temp2 |
templ := 1.

temp2 := 2.
“templ + temp2

Where are temp1 and temp?2 stored?

Executing a Method

| send a message to the object

VM looks up the selector in the class hierarchy
lookup finds a CompiledMethod

Creates a StackFrame (think of it like an Array)

e every temp has an offset here

No manual cleanup

e After method finishes execution, GC cleans up

* |f no other reference to an object referenced from a temp
==> Object gets garbage collected

* No need for you to manually manage it !

Back to the closure

* And our example with an “escaping” var

* A block can reference a temp from the outer method!

| temp myBlock |

temp := 1.
myBlock := [1 + temp].
A~ myBlock

“Escaping” Vars

* We need a way to access the Variables
* read
* write

 And there can be multiple blocks!

* we need to have access to the one place where the var
Is stored

Temps are in Contexts

 Conceptually, the temp is stored in the Context where it is
defined

* |n the example, we read temp from the method context

| temp myBlock |
temp := 1.

myBlock := [1 + temp].
A~ myBlock

But the block lives longer than the method context!

Naive idea: keep contexts

e We could just access the temps via the definition contexts
e | ots of problems
e Slow (but special bytecode could help)
e Especially as Contexts are created on demand
e All contexts would stay alive till the *block* is GCed
e all objects referenced by the temps

e receiver (self) of the method where the block is defined

What else can we do?

e Two cases: Read and Write

 Rethink the place where temps are stored

Two cases: read and write

* The closure could just read the escaping var

| temp myBlock |

myBlock := [1 + temp].
A~ myBlock

* The closure could write the escaping var

| temp myBlock |

myBlock := [:arg | temp := arqg].
A~ myBlock

Escaping Read

The variable is not changed in a closure, just read
We just need to get a reference to it to read it
Solution: use the Stack!

e “Closure Conversion” -> turn escaping var access into
a (hidden) additional parameter.

Push in stack before closure creation

e Closure has a hidden local temp with it

Escaping Write

So we really need to use the definition context?
We could just have another object (an Array)

both defining method *and” closure get a reference to the
array

They use at:put: to write

The TempVector

This is what the TempVector is all about

one Array per method / block for all defined temps that
escape "and”* have one write.

We push it on the stack (just like a copied var)

Special read/write bytecodes for speed

The Bytecode

e | ets look at some examples

Why do we create block at
runtime?

We need access to the temporary variables from outer
blocks / the method

We push them on the stack (copied vars)

We create tempVectors and pas those as copied vars via
the stack

And: We need access to self (for ivar access, too)

Some Optimizations

e Creating blocks is slow

e What can we optimize?

Clean Blocks

e What if a block does not access any variables from an
outer method ?

* And no self
 and no ivars (as we need self to read the ivar)

* And no return (as it needs the home context)

Pre-create Clean Blocks

* We do not need any information from runtime
 We can create the block at compile time

e And store the block in the literal frame, not the
CompiledBlock

* A clean block is exactly the “naive” block idea we had at
the start: it’s just a wrapper around a method that
Implements #value methods

What about constants?

* An even more trivial block: a block that just returns a
literal

 Happens more often than you think!

* e.g. at:lfAbsent: Morph>>#minHeight
"answer the receiver's minHeight"
A self
valueOfProperty: #minHeight
i1fAbsent: [2]

IWST Talk!

e CleanBlocks: Faster [] block creation

e ConstantBlocks: CleanBlocks where we can speed up
#value

e Come to out IWST presentation to learn more!

Problem TempVector

| templ temp2 myBlock |
templ = HugeObject new.
temp2 = #hello.
[templ := 1] wvalue.
A [temp2 = 1]
* We have one tempVector per method
* [eads to memory leaks!

* The long living block references just temp?2

e but via tempVector which holds onto the HugeObject

ldea TempVector Splitting

* We could partition TempVector according to liveness
* in some way similar to register allocation

e But: trade-off of “lots of temp vectors” vs “overlapping
liveness”

* First step: analyse how often this happens

Enable Clean for real

e Enable Clean Blocks by default

e Harder than you would think
e [ots of code assumed that there is an outerContext
e #home can be found via outerContext

e e.g. rewrite homeMethod to use static outerCode, not
“*homeContext method”

Problem: outerContext

block is created with reference to outerContext

e which is either the home context (method) or another
block Context

Slow (even with optimization of context object just
created on access)

Lots of data can not be GCed

Defeats to some extend the tempVector/copiedVars
optimization

Block with no outer Context

* The block creation bytecode supports creating blocks
without outer context

e We need it just for return

e End even here: we need the homeContext, not the outer
context

e Experiment with closure model that references home
directly (if needed)

If you want to help

Enable clean blocks by default
Enable block without outer context
TempVector splitting

Experiment: Fullblocks referencing home instead of outer

