
Block Closures

Marcus Denker, Inria Evref

It looks so simple

• Block of code

• It is an object!

• [] creates the object

• #value evaluates it

[1 + 2] value

It looks so simple

Is it not just a wrapper around a method implementing
#value?

[1 + 2] value

But it is not

• The block can access temps from the outer method (or block)

• The block could access self and ivars

• the block can survive the execution of the method where the
temp is defined

| temp myBlock |

temp := 1.
myBlock := [1 + temp].
^ myBlock

A block is code
• Thus: is not just a method?

• Indeed: CompiledBlock

• Shares the Superclass with CompileMethod

• Very similar: CompiledMethodLayout

• Bytecode

• Literals

Lets look at the Bytecode

• Lets look at a simple method with a simple block:

myMethod

^ [1 + 2]

Bock creation

• CompiledBlock instance is part of the literals

• A bytecode creates an instance of FullBlockClosure

• this happens at runtime (!)

• When the [] is evaluated

• But why?

Creation vs Activation
• This is a bit hard to wrap your head around, thus we

repeat:

[…]

aBlock value

Block Creation: VM creates instance
of FullBlockClosure

Block Activation: the VM executes the CompledBlock

Excursion: Local Vars

• Imagine a method with local variables

| temp1 temp2 |

temp1 := 1.
temp2 := 2.
^temp1 + temp2

Where are temp1 and temp2 stored?

Executing a Method

• I send a message to the object

• VM looks up the selector in the class hierarchy

• lookup finds a CompiledMethod

• Creates a StackFrame (think of it like an Array)

• every temp has an offset here

No manual cleanup

• After method finishes execution, GC cleans up

• If no other reference to an object referenced from a temp
==> object gets garbage collected

• No need for you to manually manage it !

Back to the closure

• And our example with an “escaping” var

• A block can reference a temp from the outer method!

| temp myBlock |

temp := 1.
myBlock := [1 + temp].
^ myBlock

“Escaping” Vars

• We need a way to access the Variables

• read

• write

• And there can be multiple blocks!

• we need to have access to the one place where the var
is stored

Temps are in Contexts

• Conceptually, the temp is stored in the Context where it is
defined

• In the example, we read temp from the method context

| temp myBlock |

temp := 1.
myBlock := [1 + temp].
^ myBlock

But the block lives longer than the method context!

Naive idea: keep contexts
• We could just access the temps via the definition contexts

• Lots of problems

• Slow (but special bytecode could help)

• Especially as Contexts are created on demand

• All contexts would stay alive till the *block* is GCed

• all objects referenced by the temps

• receiver (self) of the method where the block is defined

What else can we do?

• Two cases: Read and Write

• Rethink the place where temps are stored

Two cases: read and write

• The closure could just read the escaping var

• The closure could write the escaping var

| temp myBlock |

myBlock := [1 + temp].
^ myBlock

| temp myBlock |

myBlock := [:arg | temp := arg].
^ myBlock

Escaping Read
• The variable is not changed in a closure, just read

• We just need to get a reference to it to read it

• Solution: use the Stack!

• “Closure Conversion” -> turn escaping var access into
a (hidden) additional parameter.

• Push in stack before closure creation

• Closure has a hidden local temp with it

Escaping Write

• So we really need to use the definition context?

• We could just have another object (an Array)

• both defining method *and* closure get a reference to the
array

• They use at:put: to write

The TempVector

• This is what the TempVector is all about

• one Array per method / block for all defined temps that
escape *and* have one write.

• We push it on the stack (just like a copied var)

• Special read/write bytecodes for speed

The Bytecode

• Lets look at some examples

Why do we create block at
runtime?

• We need access to the temporary variables from outer
blocks / the method

• We push them on the stack (copied vars)

• We create tempVectors and pas those as copied vars via
the stack

• And: We need access to self (for ivar access, too)

Some Optimizations

• Creating blocks is slow

• What can we optimize?

Clean Blocks

• What if a block does not access any variables from an
outer method ?

• And no self

• and no ivars (as we need self to read the ivar)

• And no return (as it needs the home context)

Pre-create Clean Blocks

• We do not need any information from runtime

• We can create the block at compile time

• And store the block in the literal frame, not the
CompiledBlock

• A clean block is exactly the “naive” block idea we had at
the start: it’s just a wrapper around a method that
implements #value methods

What about constants?

• An even more trivial block: a block that just returns a
literal

• Happens more often than you think!

• e.g. at:IfAbsent: Morph>>#minHeight
 "answer the receiver's minHeight"
 ^ self
 valueOfProperty: #minHeight
 ifAbsent: [2]

IWST Talk!

• CleanBlocks: Faster [] block creation

• ConstantBlocks: CleanBlocks where we can speed up
#value

• Come to out IWST presentation to learn more!

Problem TempVector

• We have one tempVector per method

• Leads to memory leaks!

• The long living block references just temp2

• but via tempVector which holds onto the HugeObject

| temp1 temp2 myBlock |
temp1 = HugeObject new.
temp2 = #hello.

[temp1 := 1] value.
^ [temp2 := 1]

Idea TempVector Splitting

• We could partition TempVector according to liveness

• in some way similar to register allocation

• But: trade-off of “lots of temp vectors” vs “overlapping
liveness”

• First step: analyse how often this happens

Enable Clean for real

• Enable Clean Blocks by default

• Harder than you would think

• Lots of code assumed that there is an outerContext

• #home can be found via outerContext

• e.g. rewrite homeMethod to use static outerCode, not
“homeContext method”

Problem: outerContext
• block is created with reference to outerContext

• which is either the home context (method) or another
block Context

• Slow (even with optimization of context object just
created on access)

• Lots of data can not be GCed

• Defeats to some extend the tempVector/copiedVars
optimization

Block with no outer Context

• The block creation bytecode supports creating blocks
without outer context

• We need it just for return

• End even here: we need the homeContext, not the outer
context

• Experiment with closure model that references home
directly (if needed)

If you want to help

• Enable clean blocks by default

• Enable block without outer context

• TempVector splitting

• Experiment: Fullblocks referencing home instead of outer

