Advanced Reflection:
Metalinks

Marcus Denker, Inria

http://marcusdenker.de

Lecture at VUB Brussels, March 27, 2025

http://marcusdenker.de

What we know (l)

e Smalltalk is reflective
e (Classes, Methods, Stack-Frames... are Objects

e Reflective API on all Objects

Reflection in Smalltalk

Reflection is based on the Metaclass model, thus it is
inherently structural

Behavioral Reflection limited to:
e Method lookup on failure (#doesNotUndersand:)

e Reified stack (thisContext)

Can we do better?

* A more fine-grained reflective mechanism seems to be
missing

e |et’s look again at a Method in the Inspector

Inspector on a Method

"N BN AW W 2)

[x = 0O Playground O 2 -

Page > B @ -=

OrderedCollection>>#do:
x - 0O Inspector on a CompiledMethod (OrderedCollection>>#do:)
a CompiledMethod (OrderedCollection>>#do:) B Q a RBMessageNode (RBMessageNode((array at: index))) x
Raw Source Bytecc... Ir AST Header Meta Raw Sourcecode Scopes Tree Meta
¥ RBMethodNode(do: aBlock "Override the superclass for performan) do: aBlock

RBArgumentNode(aBlock) "Override the superclass for performance

¥ RBSequenceNode(firstindex to: lastindex do: [:index | aBlock val) reasons.”

¥ RBMessageNode(firstindex to: lastindex do: [:index | aBlock val)
firstIndex to: lastIndex do: [:index |

RBInstanceVariableNode(firstindex) aBlock value: rray - 'index)l]
RBInstanceVariableNode(lastindex)

¥ RBBlockNode([:index | aBlock value: (array at: index)])
RBArgumentNode(index)
¥ RBSequenceNode(aBlock value: (array at: index))
¥ RBMessageNode(aBlock value: (array at: index))
RBArgumentNode(aBlock)
» RBMessageNode((array at: index))

What we know (ll)

e There is an AST (Abstract Syntax Tree)
e The Pharo Smalltalk->Bytecode Compiler

 \We have Compiler Plugins

The AST

AST = Abstract Syntax Tree

Tree Representation of the Method

Produced by the Parser (part of the Compiler)

Used by all tools (refactoring, syntax-highlighting,...)

Smalltalk compiler parse:

'test 7 (1+2)°

RBMethodNode
RBVariableNode
RBAssignmentNode

RBMessageNode

RBReturnNode

AST

Root

Variable (read and write)
Assignment

A Message (most of them)

Return

Inspect a simple AST

A very simple Example

Smalltalk compiler parse: 'test “(1+2)°

x - 0O Inspector on a RBMethodNode (test * 1 +2) (h 2?2~
a RBMethodNode (test 1 +2) 2 aRBLiteralvalueNode (RBLiteralvalueNode(2)) x =P
Raw Source:.. Scopes Tree Meta Raw Sourcec... Scopes Tree Meta I_)

¥ RBMethodNode(test *1+2) test A(1+2)

¥ RBSequenceNode(" 1 +2)
¥ RBReturnNode(” 1 + 2)
¥ RBMessageNode(1 +2)
RBLiteralvalueNode(1)
RBLiteralValueNode(2)

AST: Navigation

* To make it easy to find and enumerate nodes, there are
some helper methods

e CompiledMethod has: #sendNodes,
#variableNodes, #assignmentNodes

e Every AST node has #nodesDo: and #allChildren

AST: Visitor

e RBProgramNodeVisitor: Visitor Pattern for the AST
e Make subclass, override visit... methods

e |et’s see it in action: Count Message sends

Demo: Visitor

Repeat:The AST

AST = Abstract Syntax Tree

Tree Representation of the Method

Produced by the Parser (part of the Compiler)

Used by all tools (refactoring, syntax-highlighting,...)

Smalltalk compiler parse:

'test 7 (1+2)°

The Compiller

e Smalltalk compiler -> Compiler Facade
e (Classes define the compiler to use
* You can override method #compiler

e Behind: Compiler Chain

The Compiller

Annotated
Source * AST * AST

RBParser OCSemanticAnalyzer

* IR * Bytecode

OCASTTranslator/
ITRBuilder

Annotated
AST

IRBytecodeGenerator

AST Integration

e QOriginally just internal to the compiler

e Pharo:

 send #ast to a method to get the AST

e Cached for persistency.

(Point>>#x) ast == (Point>>#x) ast
—> frue

AST Integration

* \We can navigate from execution to AST

e Example:

[1 + 2] sourceNode.

thisContext method sourceNode blockNodes first

Compiler: Extensible

All parts can be subclassed

Compiler instance can be setup to use the subclass for
any part (parser, name analysis, translator...)

enable for a class only by implementing #compiler on the
class side

Compiler Plugins

* The AST can be easily transformed
e \We added a Plugin architecture to the Compiler

* enable for a class only by implementing:

compiler
Asuper compiler addPlugin: MyPlugin

The Compiller

Annotated
Source * AST * AST

RBParser OCSemanticAnalyzer

* IR * Bytecode

OCASTTranslator/
ITRBuilder

Annotated
AST

IRBytecodeGenerator

Plugin

Annotated Annotated

RBParser OCSemanticAnalyzer OCCompilerASTPlugin

Annotated
AST * IR * Bytecode

OCASTTranslator/

: IRBytecodeGenerator
IRBuilder

Plugin: Example

DemoPlugin>>transform

transform
| sends |
sends := ast sendNodes.
sends := sends select: [:each | each selector = #ifTrue:].
sends do: [:each | each replaceWith:

(RBLiteralNode value: true)].

A

ast

e We get all ifTrue: sends

e replace them with true

Back to the topic...

* A more fine-grained reflective mechanism seems to be
missing

e Can’t we do something with the AST?

Wouldn’t it be nice..

e With the AST, wouldn’t it be nice if we could use this
structure for Behavioural Reflection?

e |f we could somehow attach a “arrow to the code” that
points to a meta-object

meta-object
for this Send

test

AC1 o+ 2)

We have all pieces...

We have the AST for each method
It is quite simple
We have a compiler in the system

So this should be possible...

The MetaLink

link := Metalink new
metaObject: Halt;
selector: #once;
control: ibefore.

Metalink points to metaObject

Defines a selector to call

And a control attribute: #before, #after, #instead
Installed on a AST node:

(Number>>#sin) ast link: link

The MetaLink

 Can be installed on any AST Node

* Methods will be re-compiled on the fly just before next
execution

e Link installation is very fast
e Changing a method removes all links from this method

* Managing link re-installation has to be done by the user

MetaLink: MetaObject

MetaObject can be any object
Even a Block: [Transcript show ‘hello’]
Install on any Node with #link:

de-install a link with #uninstall

MetaLink: Selector

Metalink defines a message send to the MetaObject
#selector defines which one

Default is #value

Yes, a selector with arguments is supported

 We can pass information to the meta-object

Metalink: Argument

 The arguments define which arguments to pass

* We support a number of reifications

Relfications

* Reifications define data to be passed as arguments

 Reify —> Make something into an object that is not one
normally

e Example: “All arguments of this message”

Reifications: examples

All nodes:. #object #context #class #node
#link

Sends: #arguments #receiver #selector
Method: #arguments #selector

Variable: #value

They are defined as subclasses of class RFReification

Reifications as MetaObject

 We support some special metaObjects:
e #node The AST Node we are installed on
e #object self at runtime

e ffclass The class the links is installed in

MetaLink: Condition

* We can specify a condition for the MetalLink
e Link is active if the condition evaluates to true

 We can pass reifications as arguments

link := Metalink new
metaObject: Halt;
selector: i#once;
condition: [:o0bject | object == 5] arguments: #(object).

(Number>>#sin) ast link: link.

MetalLink: control

* We can specify when to call the meta-object
e We support #before, #after and #instead

* The instead is very simple: last one wins

Example: Log

* We want to just print something to the Transcript

link := Metalink new
metaObject: [Transcript show: 'Reached Here'].

(Number>>#sin) ast link: link

Recursion Problem

e Before we see more examples: There is a problem

* Imagine we put a MetalLink on some method deep in the
System (e.g new, +, do:).

 QOur Meta-Object might use exactly that method, too

q Endless Loop!!

Recursion Problem

Solution: Meta-Level
We encode the a level in the execution of the system
Every Link Activation increases the level

A meta-link is just active for one level. (e.g. 0)

link := MetalLink new
metaObject: [Object new];
level: 0.

(Behavior>>#new) ast link: link.

Example: Log

e Better use #level: O

* Nevertheless: be careful! If you add this to method called
often it can be very slow.

link := Metalink new
metaObject: [Transcript show: 'Reached Here'’];
level: O.

Example: Code Coverage

e We can add the node itself as Metaobject

 Tag the node as being executed

link := Metalink new
metaObject: #node;
selector: #tagExecuted.

tagExecuted
“self propertyAt: #tagExecuted put: true

Example: Breakpoint

* We can use Halt as metaobject

e Here: halt Once

link := MetalLink new
metaObject: Halt;
selector: #once

Breakpoints

* |ots of kinds of breakpoints easily implementable
 \We did this till Pharo11
e BreakPoint, WatchPoint... with a shared superclass

 implement each their own Metalink

Pharo 12: DebugPoints

 DebugPoints are a generalized Breakpoints
 DebugPoints allow for composable behavior
e Break

e \Watch

e Conditions...

Example: WatchPoint

 Watchpoint: Record Value at a point in the AST

e Example: Watch event in WorldMorph>>#mouseDown:

Click on background
-> value recorded

Morphic-Widgets-FastTable-Test
Morphic-Widgets-List
Morphic-Widgets-Menubar
Morphic-Widgets-Pluggable
Morphic-Widgets-PolyTabs

Marnhirs Widante Crrallinea
o] Filter...

Packages O Scoped View O Projects | @ Flat O Hier. | ¢
lorldMorph x Comment x ¥] mouseDown:
louseDown: evt

super mouseDown: evt.
self currentWindow ifNotNil: [:topWindow |

(De)activate all Search by name

v| Watchpoint WorldMorph>>#mouseDown:

listOfSteppingMorphs

Debug Point Browser

& X

WatchPoirclass Wol Refresh Remove

| enabled: (de)activates debug point
Condition: Hit when the condition evaluat
Test Environment Only: Hits only when ex
Chain: Each debug point is hit once in seq
Counter: Tracks how many times the debu
Once: Deactivates debug point after one h

Scrint: Executes a scrint at each hit

DebugPoint: MetaLink

e see DebugPoint>>#metalink

e Code:

metaLink
~(MetaLink new
metaObject: self;

options: #(+ optionCompileOnLinkInstallation);
selector: #hitWithContext:;

arguments: #(context)).

Example: Code Coverage

e Example of a MetalLink with a #node MetaObiject

e Meta-Object is the node that the link is installed on

link := MetalLink new
metaObject: #node;
selector: #tagExecuted.

Interesting Properties

e Cross Cutting
 One Link can be installed multiple times
 Over multiple methods and even Classes

 And across operations (e.g., Send and Assignment) as
long as all reifications requested are compatible

 Fully Dynamic: Links can be added and removed at runtime

 Even by the meta-object of another meta-link!

Example: Accept for Test

* Imagine we want to edit a method that is called often by
the System.

e How do we test it?

e |t would be nice if we could “Accept for Test”

Example: Accept for Test

e Menu in the browser: AST menu shows for all nodes.
(Code for Pharo 11)

SycSourceCodeCommand subclass: #SycAcceptForTest
instanceVariableNames: 'source'
classVariableNames: '
package: 'SystemCommands-SourceCodeCommands'

defaultMenultemName
~'"Accept for Test'

readParametersFromContext: aSourceCodeContext
super readParametersFromContext: aSourceCodeContext.
source := aSourceCodeContext tool pendingText

* We implement our code in the #execute method

Example: Accept for Test

e How we know that we are in a test?

CurrentExecutionEnvironment value isTest

e We can compile the current text buffer

newMethod := method methodClass compiler
source: source;
options: #(+ optionParseErrors);
compile.

Example: Accept for Test

* Add this code to the beginning of the method:

[taContext :args |
CurrentExecutionEnvironment value i1sTest i1fTrue: [

aContext return: (newMethod
valueWithReceiver: aContext
receiver
arguments: args)]]

e | et’s do that with a MetalLink!

Example: Accept for Test

execute
| newMethod metaLink |

newMethod := method methodClass compiler
source: source;
options: #(+ optionParseErrors);
compile.

"the link executes the method we just created and returns"”

metalLink := MetalLink new
metaObject: [:aContext :args |
CurrentExecutionEnvironment value isTest
ifTrue: [aContext return: (newMethod
valueWithReceiver: aContext receiver
arguments: args)] 1];

selector: #value:value:;
arguments: #(context arguments).

self method ast link: metalink

What did we see?

ASTs and AST Visitors

Compiler and Compiler Plugins
Metalinks

Recursion Problem

Examples: Log, Breakpoint, Coverage

Accept for Test

Limitations

e #instead needs more work (e.g to support conditions)

o Keep in mind: next metalink taken into account for next
method activation

* Take care with long running loops!

Reflectivity NG

e |tis time to step back

e What is good? What not?

 What would a “Future Reflectivity” Model and Framework
look like?

Good Points

High level, sub-method model

Installation does not trigger immediate recompilation
* Very fast to install lots of links

Cross-Cutting

Reifications

Things to Improve

e AST: Not always persistent

e But if, it takes memory
e |nstallation hard to control

 Ca we have Transaction semantics?
* Recursion Control is very slow

e VM support?

Beyond AST

* |Imagine Instance Variables

e To “put a link” on a Variable: annotate all read/write
AST nodes

 We have helpers for that
e |dea: MetalLinks on structure outside of AST

e First experiments: Metalinks on Variables

Reflectivity NG

e Slowly starting

e Help Wanted !

Questions?

