
Advanced Reflection:
MetaLinks

Marcus Denker, Inria

http://marcusdenker.de

Lecture at VUB Brussels, March 27, 2025

http://marcusdenker.de

What we know (I)

• Smalltalk is reflective

• Classes, Methods, Stack-Frames… are Objects

• Reflective API on all Objects

Reflection in Smalltalk

• Reflection is based on the Metaclass model, thus it is
inherently structural

• Behavioral Reflection limited to:

• Method lookup on failure (#doesNotUndersand:)

• Reified stack (thisContext)

Can we do better?

• A more fine-grained reflective mechanism seems to be
missing

• Let’s look again at a Method in the Inspector

Inspector on a Method

What we know (II)

• There is an AST (Abstract Syntax Tree)

• The Pharo Smalltalk->Bytecode Compiler

• We have Compiler Plugins

The AST

• AST = Abstract Syntax Tree

• Tree Representation of the Method

• Produced by the Parser (part of the Compiler)

• Used by all tools (refactoring, syntax-highlighting,…)

Smalltalk compiler parse: 'test ^(1+2)'

AST

• RBMethodNode Root

• RBVariableNode Variable (read and write)

• RBAssignmentNode Assignment

• RBMessageNode A Message (most of them)

• RBReturnNode Return

Inspect a simple AST

• A very simple Example

Smalltalk compiler parse: 'test ^(1+2)'

AST: Navigation

• To make it easy to find and enumerate nodes, there are
some helper methods

• CompiledMethod has: #sendNodes,
#variableNodes, #assignmentNodes

• Every AST node has #nodesDo: and #allChildren

AST: Visitor

• RBProgramNodeVisitor: Visitor Pattern for the AST

• Make subclass, override visit… methods

• Let’s see it in action: Count Message sends

Demo: Visitor

Repeat:The AST

• AST = Abstract Syntax Tree

• Tree Representation of the Method

• Produced by the Parser (part of the Compiler)

• Used by all tools (refactoring, syntax-highlighting,…)

Smalltalk compiler parse: 'test ^(1+2)'

The Compiler

• Smalltalk compiler -> Compiler Facade

• Classes define the compiler to use

• You can override method #compiler

• Behind: Compiler Chain

The Compiler

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder

IRBytecodeGenerator

AST Integration

• Originally just internal to the compiler

• Pharo:

• send #ast to a method to get the AST

• Cached for persistency.

(Point>>#x) ast == (Point>>#x) ast
—> true

AST Integration

• We can navigate from execution to AST

• Example:

[1 + 2] sourceNode.

thisContext method sourceNode blockNodes first

Compiler: Extensible

• All parts can be subclassed

• Compiler instance can be setup to use the subclass for
any part (parser, name analysis, translator…)

• enable for a class only by implementing #compiler on the
class side

Compiler Plugins

• The AST can be easily transformed

• We added a Plugin architecture to the Compiler

• enable for a class only by implementing:

compiler

	 ^super compiler addPlugin: MyPlugin

The Compiler

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder

IRBytecodeGenerator

Plugin

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder

IRBytecodeGenerator

OCCompilerASTPlugin

Annotated
AST

Plugin: Example

• We get all ifTrue: sends

• replace them with true

DemoPlugin>>transform
transform

| sends |
sends := ast sendNodes.
sends := sends select: [:each | each selector = #ifTrue:].
sends do: [:each | each replaceWith:

 (RBLiteralNode value: true)].
^ast

Back to the topic…

• A more fine-grained reflective mechanism seems to be
missing

• Can’t we do something with the AST?

Wouldn’t it be nice..
• With the AST, wouldn’t it be nice if we could use this

structure for Behavioural Reflection?

• If we could somehow attach a “arrow to the code” that
points to a meta-object

test

 ^(1 + 2)

meta-object
for this Send

We have all pieces…

• We have the AST for each method

• It is quite simple

• We have a compiler in the system

• So this should be possible…

The MetaLink

• MetaLink points to metaObject

• Defines a selector to call

• And a control attribute: #before, #after, #instead

• Installed on a AST node:

link := MetaLink new
 metaObject: Halt;
 selector: #once;
 control: #before.

(Number>>#sin) ast link: link

The MetaLink
• Can be installed on any AST Node

• Methods will be re-compiled on the fly just before next
execution

• Link installation is very fast

• Changing a method removes all links from this method

• Managing link re-installation has to be done by the user

MetaLink: MetaObject

• MetaObject can be any object

• Even a Block: [Transcript show ‘hello’]

• Install on any Node with #link:

• de-install a link with #uninstall

MetaLink: Selector

• MetaLink defines a message send to the MetaObject

• #selector defines which one

• Default is #value

• Yes, a selector with arguments is supported

• We can pass information to the meta-object

MetaLink: Argument

• The arguments define which arguments to pass

• We support a number of reifications

Reifications

• Reifications define data to be passed as arguments

• Reify —> Make something into an object that is not one
normally

• Example: “All arguments of this message”

Reifications: examples

• All nodes: #object #context #class #node
#link

• Sends: #arguments #receiver #selector

• Method: #arguments #selector

• Variable: #value  

They are defined as subclasses of class RFReification

Reifications as MetaObject

• We support some special metaObjects:

• #node The AST Node we are installed on

• #object self at runtime

• #class The class the links is installed in

MetaLink: Condition

• We can specify a condition for the MetaLink

• Link is active if the condition evaluates to true

• We can pass reifications as arguments

link := MetaLink new
 metaObject: Halt;
 selector: #once;
 condition: [:object | object == 5] arguments: #(object).

(Number>>#sin) ast link: link.

MetaLink: control

• We can specify when to call the meta-object

• We support #before, #after and #instead

• The instead is very simple: last one wins

Example: Log

• We want to just print something to the Transcript

link := MetaLink new
metaObject: [Transcript show: 'Reached Here'].

(Number>>#sin) ast link: link

Recursion Problem

• Before we see more examples: There is a problem

• Imagine we put a MetaLink on some method deep in the
System (e.g new, +, do:).

• Our Meta-Object might use exactly that method, too

Endless Loop!!

Recursion Problem
• Solution: Meta-Level

• We encode the a level in the execution of the system

• Every Link Activation increases the level

• A meta-link is just active for one level. (e.g. 0)

link := MetaLink new
 metaObject: [Object new];
 level: 0.

(Behavior>>#new) ast link: link.

Example: Log

• Better use #level: 0

• Nevertheless: be careful! If you add this to method called
often it can be very slow.

link := MetaLink new
metaObject: [Transcript show: 'Reached Here’];

 level: 0.

Example: Code Coverage

• We can add the node itself as Metaobject

• Tag the node as being executed

link := MetaLink new
metaObject: #node;
selector: #tagExecuted.

tagExecuted
^self propertyAt: #tagExecuted put: true

Example: Breakpoint

• We can use Halt as metaobject

• Here: halt Once

 link := MetaLink new
metaObject: Halt;
selector: #once

Breakpoints

• Lots of kinds of breakpoints easily implementable

• We did this till Pharo11

• BreakPoint, WatchPoint… with a shared superclass

• implement each their own Metalink

Pharo 12: DebugPoints

• DebugPoints are a generalized Breakpoints

• DebugPoints allow for composable behavior

• Break

• Watch

• Conditions…

Example: WatchPoint

• Watchpoint: Record Value at a point in the AST

• Example: Watch event in WorldMorph>>#mouseDown:
Click on background

-> value recorded

DebugPoint: MetaLink
• see DebugPoint>>#metaLink

• Code:

metaLink
^(MetaLink new

metaObject: self;
options: #(+ optionCompileOnLinkInstallation);
selector: #hitWithContext:;
arguments: #(context)).

Example: Code Coverage

• Example of a MetaLink with a #node MetaObject

• Meta-Object is the node that the link is installed on

link := MetaLink new
metaObject: #node;
selector: #tagExecuted.

Interesting Properties
• Cross Cutting

• One Link can be installed multiple times

• Over multiple methods and even Classes

• And across operations (e.g., Send and Assignment) as
long as all reifications requested are compatible

• Fully Dynamic: Links can be added and removed at runtime

• Even by the meta-object of another meta-link!

Example: Accept for Test

• Imagine we want to edit a method that is called often by
the System.

• How do we test it?

• It would be nice if we could “Accept for Test”

Example: Accept for Test
• Menu in the browser: AST menu shows for all nodes.

(Code for Pharo 11)
SycSourceCodeCommand subclass: #SycAcceptForTest

instanceVariableNames: 'source'
classVariableNames: ''
package: 'SystemCommands-SourceCodeCommands'

defaultMenuItemName
^'Accept for Test'

readParametersFromContext: aSourceCodeContext
super readParametersFromContext: aSourceCodeContext.

 source := aSourceCodeContext tool pendingText

• We implement our code in the #execute method

Example: Accept for Test

• How we know that we are in a test?

CurrentExecutionEnvironment value isTest

• We can compile the current text buffer

newMethod := method methodClass compiler
source: source;
options: #(+ optionParseErrors);
compile.

Example: Accept for Test

• Add this code to the beginning of the method:
[:aContext :args |

CurrentExecutionEnvironment value isTest ifTrue: [

 aContext return: (newMethod
 valueWithReceiver: aContext
 receiver
 arguments: args)]]

• Let’s do that with a MetaLink!

Example: Accept for Test
execute

| newMethod metaLink |

newMethod := method methodClass compiler
source: source;
options: #(+ optionParseErrors);
compile.

"the link executes the method we just created and returns"
metaLink := MetaLink new

metaObject: [:aContext :args |
CurrentExecutionEnvironment value isTest

ifTrue: [aContext return: (newMethod
 valueWithReceiver: aContext receiver
 arguments: args)]];

selector: #value:value:;
arguments: #(context arguments).

 self method ast link: metaLink

What did we see?
• ASTs and AST Visitors

• Compiler and Compiler Plugins

• MetaLinks

• Recursion Problem

• Examples: Log, Breakpoint, Coverage

• Accept for Test

Limitations

• #instead needs more work (e.g to support conditions)

• Keep in mind: next metaLink taken into account for next
method activation

• Take care with long running loops!

Reflectivity NG

• It is time to step back

• What is good? What not?

• What would a “Future Reflectivity” Model and Framework
look like?

Good Points

• High level, sub-method model

• Installation does not trigger immediate recompilation

• Very fast to install lots of links

• Cross-Cutting

• Reifications

Things to Improve
• AST: Not always persistent

• But if, it takes memory

• Installation hard to control

• Ca we have Transaction semantics?

• Recursion Control is very slow

• VM support?

Beyond AST

• Imagine Instance Variables

• To “put a link” on a Variable: annotate all read/write
AST nodes

• We have helpers for that

• Idea: MetaLinks on structure outside of AST

• First experiments: Metalinks on Variables

Reflectivity NG

• Slowly starting

• Help Wanted !

Questions?

