
Context-Aware Aspects

Éric Tanter, Kris Gybels, Marcus Denker,
Alexandre Bergel
Trinity College, Dublin

Alexandre.Bergel@cs.tcd.ie

Vienna, March 26, 2006

Introduction

• Context awareness

– program behavior depends on “context”

– issue: if statements tangling

– seen as a crosscutting concern

• Our approach: aspect language constructs

– need for context abstractions in the language [R.Gabriel@aosd06]

2

Outline

1. Contexts with an Online Shopping Application

2. Context-Aware Aspects

3. Framework-based approach

4. Related work

5. Conclusion

3

Contexts with an Online Shopping Application

When a purchase has to be ordered,
the bill is calculated.

aspect Discount {
 double rate = 0.90;

pointcut amount():
execution (double ShoppingCart.getAmount());

double around():
amount() {return proceed() * rate;}

}

4

Variability in the relation Context-Aspect

• Discounting aspect can be based on
– promotion when user checks out
– promotion when user logs in
– promotion when an item is added to cart
– ...

• Promotional context can be based on
– time slots
– state of the stock (overload)
– purchase done via web service (ie. control flow property)
– ...

• Rate can be constant or depend on the promotion context

5
Separate contexts and aspects

• Stateful: public and private data carried to describe an
environment.

• Composable: elaborated contexts obtained from primitive
contexts.

• Parameterized: generic context parametrized by aspects.

6

Context: Part of the Environment

Reference to a context in the pointcut definition:

aspect Discount {
 double rate = 0.90;
pointcut amount():
execution (double ShoppingCart.getAmount())
&& inContext(PromotionCtx);

double around(): amount() {
 return proceed() * rate;
}

}

Restricting an Aspect to a Context - step 1

7

context restriction

“apply
discount if currently in
promotion context”

Discount rate is determined by the context:

aspect Discount {
pointcut amount(double rate):
execution (double ShoppingCart.getAmount())
&& inContext(PromotionCtx(rate));

double around(double rate): amount(rate) {
return proceed() * rate;

}
}

Restricting an Aspect to a Context - step 1I

8

context state exposure

“... and accessing
the rate”

A context is parameterized by the dependent aspect:

aspect Discount {
pointcut amount(double rate):
execution (double ShoppingCart.getAmount())
&& inContext(PromotionCtx(rate))
&& inContext(StockOverloadCtx[0.80]);

double around(double rate): amount(rate) {
return proceed() * rate;

}
}

Restricting an Aspect to a Context - step III

9

context parameterization

“... if
stock overload
reaches 80%”

Extensible Context Restrictions

•General purpose restrictions:

– inContext (c) : if current context = c

– createdInContext (c): if this was created in context c

– ...

•Domain/application-specific restrictions:

– putInCartInContext (c): if context when this was added
to a cart = c

– ...

10

Extensible Context Restrictions

•General purpose restrictions:

– inContext (c) : if current context = c

– createdInContext (c): if this was created in context c

– ...

•Domain/application-specific restrictions:

– putInCartInContext (c): if context when this was added
to a cart = c

– ...

11

CONTEXT SNAPSHOTS

Context-Aware Aspects in a Nutshell

• Contexts and aspects are separated.

• Contexts are parameterized, composable and stateful.

• Context state bound to pointcut variables in aspects.

• Support for new context-related pointcut restrictors.

12

13

Implementation

• Requirements for an AOP framework (core semantics)

– aspects first-class (eg. cflow exposed as an object)

– extensibility of dynamic conditions

• Our implementation: Reflex

– links as first-class pointcut/advice pairs

– activation conditions as objects

Implementation

14

activation

condition

hookset

metaobject advice

pointcut

shadow

residue
context restrictions

Framework for Context-Aware Aspects

15

getState(): ContextState
Context

getContext(): Context
ContextState

*
1

- define(Context)
- get(): List<ContextState>

Contexts
* 1

evaluate(Object): boolean
ContextActive

1

- annotate(ClassSelector)
- snapshot(Hookset, Parameter)

SnapshotCtxActive

CtxAnnotator

getRate(): double
PromotionState

rate: double
PromotionCtx

CurrentlyInCtx

CreatedInCtx

PutInCartInCtx

Context Definition Framework

Context Restriction Framework

O
b
j
e
c
t
-
l
e
v
e
l

A
n
n
o
t
a
t
i
o
n

F
r
a
m
e
w
o
r
k

context definitions

activation conditions

Definition of the Promotion context

16

. Promotion active when using web services (control flow)

. Reference to past context state: which state to capture?

class PromotionCtx implements Context {
 double rate = ...; // variable state

 // cflow(execution(* WebServiceRequest+.*(..)))
 CFlow cf = CFlowFactory.get(
 new Hookset(MsgReceive.class, new NameCS(”WebServiceRequest”),

 new AnyOS()));

 ContextState getState() {
 return (cf.in())? new PromotionState(rate)
 : null;
 }
}

Related Work

• ContextL [Dynamic Languages Symposium 2005]

– language approach to context orientation, no aspects

• EAOP, stateful aspects, ...

– focus on “internal context” (joinpoints), no notion of external ctx

• CaesarJ [TAOSD 2006]

– thread-based scoping (kind of ctx)

17

Conclusion

18

• Proposed the notion of context-aware aspects
– aspects that depend on context

– new and extensible set of pointcut restrictors

• Framework for context-aware aspects based on Reflex.

• Handling context-related behavior as aspects
allows for a better modularization.

• Future Work
– Concrete syntax for context-aware aspects over Reflex

– Apps in ubiquitous computing: eg. WildCAT for external context

• Aspect behaviour depends on
(possibly past) context

• Contexts
– stateful
– composable
– parameterized
– can be snapshot

19

Alexandre Bergel
 Alexandre.Bergel@cs.tcd.ie

Context-Aware Aspects

