ccg: a tool for writing dynamic code
generators

Ian Piumarta
Laboratoire d’informatique de l'université de Paris VI (LIP6)

mailto:ian.piumarta@inria.fr
http://www-sor.inria.fr/~piumarta

OOPSLA’99 workshop on simplicity, performance and portability in virtual machine
design

Abstract

“ccg ” is a tool for writing dynamic code generators in C and C++. It allows efficient
dynamic code generation for PowerPC, Sparc and Pentium to be embedded in arbitrary
C programs. Dynamically generated code is specified using the standard assembler
syntax of the target platform, with extensions to allow C expressions to appear in
operands. The program can therefore “specialise” all apsects of the generated code at
runtime: literal operands, register selection, jump/branch destinations, elements of
complex addressing modes, and so on.

Introduction

Modern virtual machines often rely on dynamic native code generation to achieve good
performance. Writing a dynamic code generator is a complex task, and solutions are
often ad—hoc due to the lack of proper support tools. ccg is a dynamic code generator
generator that relieves the VM implementor of many of the unpleasant tasks associated
with dynamic code generation, and which can be used to create code generators of
varying complexity: from simple template expansion to more complex optimising code
generation. ccg supports the complete specialisation of native code fragments based on
values computed at runtime. Special care has been taken to ensure that the code
generators that it produces have very low overhead, typically two or three instructions
executed for each instruction generated dynamically at runtime.

Using ccg to build dynamic code generators

ccg has two main components: a target-independent source—to—source preprocessor and
a target—dependent runtime assembler.

The preprocessor

The preprocessor takes a C (or C++) source file as input and copies the majority of it
unchanged to the output. The preprocessor recognises several directives that look

similar to cpp directives. Among these is a directive to select the target processor of the
dynamic code generator, for example:

#cpu pentium

This is directive has two effects. First, it selects the assembler syntax and instruction
set that the preprocessor recognises within dynamic code sections (see below). This
allows code for each target to use the “native” syntactic conventions of its assembly
language, and permits the preprocessor to reject illegal instructions and addressing
modes before running the C compiler (thereby avoiding confusing complaints from the
compiler about undefined functions resulting from illegal assembler statements).
Second, it is replaced in the output file by a #include directive to read the cpp macro
definitions for the corresponding runtime assembler.

The preprocessor also detects dynamic code sections within the source file. These are
sections of assembly language for the selected target CPU, delimited by #[and]# . For
example:

#[movl $42, %eax #

These are replaced in the output file by calls to the runtime assembler macros that will
generate dynamic code corresponding to the assembly language statements in the
dynamic code section. For example, the above dynamic code section is replaced by the
following macro call in the output file:

{_MOVLir(42, EAX);}

The preprocessor is very careful to maintain the correspondance between input and
output line numbers, so that any error messages from cpp or cc can easily be related to
the original input file.

It is essential to understand the difference between dynamic code sections and “asm”
statements. Dynamic code sections are not replaced by the assembler statements that
they contain (as would be the case with an asm statement), but rather by C code that
generates the assembly instructions in the dynamic code section at runtime.

The following figure shows the steps and files involved in compiling a dynamic code
generator, in this case for the Sparc processor:

preprocessor

oo cpp oo id
rrog.c ———= pProg.o

aEm-sparc.h T
gem-common .k

runtime assembler

prog.cqg prog

The runtime assembler

As mentioned earlier, the runtime assembler is composed mainly of a set of cpp macro
definitions that implement an assembler for the selected target architecture. The
runtime assembler also defines a couple of external variables of which the most
important is asm_pc, the address at which the next dynamically—generated instruction
will be written. The preprocessor recognises several assembly language “pseudo-ops”,
including

.org anExpression

which is replaced by an assignment of anExpr essi on to asm_pc.

Continuing with the above example, the macro call

_MOVLir(42, EAX);

is expanded by cpp (through several levels of intermediate macros) into the C code to
generate the corresponding instruction:

((*(u_int8_t*)asm_pc)++)=((u_int8_t)((0xb8|(0x40&0x7))&0xff)),
((*((u_int32_t*asm_pc)++)=((u_int32_t)((42))));

which in turn is easily optimised by any decent Pentium C compiler into something
similar to:

movb $0xb8, (%besi)
incl %esi

movl $42, (%esi)
leal 4(%esi), %esi

Operands can be specialised at runtime with computed values. For example, both the
literal source and register destination in the above dynamic instruction could be
specified as expressions based on values contained in C variables. The generated code
would still contain “fixed” source and destination operands, but these would be
recomputed each time the dynamic code section is executed to generate new code. Such
specialisation is possible for all the elements found in operands: literals, register
“numbers”, branch destinations, indices and offsets in complex addressing modes, and so

on. (We should note at this point that there exists a second pair of delimiters for
dynamic code, #{ ... }# , which differ in that two passes are made over the dynamic code
section to perform range—checking on forward branch displacements.) The above kind of
“implicit specialisation” is not possible for opcodes, although the same effect can easily
be achieved with a C if-else or switch statements containing alternative dynamic
code sections.

Runtime assemblers are implemented entirely in cpp macros. The most important
consequence of this is that any decent C compiler can perform constant—folding and
other optimisations at static compile time to produce optimal code for the runtime code
generator. For example, the “expanded” code shown above is a somewhat simplified
version of reality, since the runtime assembler macros include full error checking (illegal
register combinations, literal and branch displacement sizes, and so on) implemented as
conditional expressions. In almost all legal cases the C compiler “constant—folds” and
“dead—code—eliminates” these checks out of existence since the condition is reduced at
static compile time to a constant “true” or “false”, leaving only the “store and increment”
instructions behind in the final compiled code.

The runtime cost is on average three instructions executed and one and a half memory
writes for each instruction generated dynamically. This compares favourably with
simple concatenation of pre-—assembled “templates” using memcpy(the simplest possible
alternative for dynamic code generation), and the 6 instructions executed for each
generated instruction reported for ccg ’s closest living relative, vcode .

Example: an “RPN compiler” based on “templates”

To illustrate the use of ccg we consider a compiler that creates callable C functions at
runtime to evaluate simple numeric functions applied to an argument. The code
generator accepts as input a string containing an RPN expression, and returns the
address of a dynamically—generated function. The function accepts an integer
argument, applies the expression to it, and returns the result. It could be used, for
example, to generate a function converting farenheit degrees into centigrade degrees:

#cpu pentium
typedef int (*pifi)(int);int main()
{

pifi f2c= rpnCompile("32-5*9/");
inti;
for (i= 32; i <= 212; i+= 10)
printf(" %3d F = %3d C\n", i, f2c(i));
return O;

}

The function rpnCompile is the runtime code generator. It must perform the following
tasks:

1. allocate space for the dynamically—generated function;
2. generate a C prologue appropriate for a function taking one integer argument;

3. “parse” the RPN expression and generate machine instructions to apply that
expression to the runtime argument;

. generate a C epilogue to return the integer result; and

. return the address of the generated code, of type pifi (pointer to int function of
int)

[

Each of these tasks is shown below. The example is written for the Pentium processor,
with which most people should be familiar.

Allocating space for the compiled expression

Most processors (including the Pentium) allow executable code to appear in data space.
A buffer for the dynamically—generated code can therefore be allocated simply by calling
malloc :

pifi rpnCompile(char *expr)

{

static insn *codePtr= 0;
pifi fn;
if (codePtr == 0)
codePtr= (insn *)malloc(1024);

This stores a pointer to a buffer holding up to 1024 bytes of dynamically—generated code
in the variable codePtr .

Generating the C prologue

The prologue must save the frame pointer ebp, and then copy the stack pointer esp into
it to create the frame in which the dynamically—generated function will execute.

#
.org codePtr
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), Yeax
#

The last line in the prologue moves the single int argument from the stack into the
working register eax. Each operation in the expression will take one argument from the
stack and the other from eax, leaving the result in eax.

Parsing the expression and expanding the appropriate template.

The “parser” is a simple loop that iterates over the string containing the input
expression, terminating when it reaches the \O' at the end of the string.

while (*expr) {

We must deal with two entities in the input expression: numeric constants and
arithmetic operations.

Numeric constants can be conveniently detected using sscanf and converted into an
int using atoi . The compiler increments the input expression pointer expr past the
numeric constant, and generates code to save the current intermediate result in eax
onto the stack and reload the register with the constant:

int n;
if (sscanf(expr, "%[0-9]1%n", buf, &n)) #[
! expr+=n-1;
pushl %eax
movl $(atoi(buf)), Y%eax
#

Note the call to atoi which appears as an immediate operand to the movl instruction!
The call to atoi happens during dynamic code generation, and the constant result
becomes the literal operand to the generated movl instruction which is executed later,
when the program calls the dynamically—generated function.

If the input element is not a constant then it must be an arithmetic operation. These
are detected using a switch with one case per operation. The generated code must

pop the “left” operand of the stack and apply it to the “right” operand in the intermediate
register %eax. The result is left in the register:

else switch (*expr) {

case '+ #|

popl %ecx

addl %ecx, %eax
#

break;

case - #|

movl %eax, %ecx
popl %eax

subl %ecx, %eax
#

break;

case *": #|

popl %ecx
imull %ecx, %eax
#

break;

case 'l #

movl %eax, %ecx
popl %eax

cltd

idivl %ecx, %eax
#

break;
default:

fprintf(stderr, "rpnCompile: unknown operator: %s\n", expr);
abort();

The loop iterating over the input expression can now be terminated:

++expr;

}

Generating the C epilogue and returning the address of the
generated code

The epilogue is trivial. The result is already in the place required by the Pentium ABI
(the register %eax), and the instruction leave restores the caller’s frame before
returning:

#

leave

ret
#
fn= (pifi)codePtr;
codePtr=asm_pc;
return fn;

}

At the end of code generation codePtr contains the address of the
dynamically—generated function and the ccg —defined variable asm_pc contains the
address where the next dynamically—generated instruction will be placed. rpnCompile
therefore sets codePtr to the value of asm_pc and returns the original value of
codePtr asits result. The caller can store this address and then call it to apply the
dynamically-compiled expression to an argument in the same manner as calling a
statically—compiled C function.

The code produced by calling rpnCompile("32-5*9/") is as follows:

0x8049d8a: push %ebp
0x8049d8b: mov %esp,%ebp
0x8049d8d: mov 0x8(%ebp),%eax
0x8049d90: push %eax
0x8049d91: mov $0x20,%eax
0x8049d96: mov %eax,%ecx
0x8049d98: pop Yeax
0x8049d99: sub %ecx,%eax
0x8049d9b: push %eax
0x8049d9c: mov $0x5,%eax
0x8049dal: pop %ecx
0x8049da2: imul %ecx,%eax
0x8049da5: push %eax
0x8049da6: mov $0x9,%eax
0x8049dab: mov %eax,%ecx
0x8049dad: pop %eax
0x8049dae: cltd

0x8049daf: idiv %ecx,%eax

0x8049db1: leave
0x8049db2: ret

Using ccg for VM implementation

Although extremely simple, the rpnCompile example demontrates the essentials of ccg
. In a real VM the input to the compile function would be a sequence of bytecodes, and
the output the address of the compiled native code. The compile function itself would
be a lot more complex, possibly using dataflow analysis to generate optimised dynamic
code. For example, the code generator for the stack—based language provided as an
example in the ccg package is roughly 1000 lines long, and uses a “simulation stack” to
generate optimised dynamic code. For the f2c function used in the above example it
produces

0x805352c: push %ebp
0x805352d: mov %esp,%ebp
0x805352f: push %ebx
0x8053530: mov 0x8(%ebp),%eax
0x8053533: sub $0x20,%eax
0x8053536: imul $0x5,%eax,%eax
0x8053539: mov $0x9,%ebx
0x805353€: cltd

0x805353f: idiv %ebx,%eax
0x8053541: pop %ebx
0x8053542: leave

0x805354b: ret

which is perfectly acceptable. Using ccg this optimising dynamic code generator
required two days of effort to implement. Without ccg the task would have been a lot
more difficult.

Availability

The ccg preprocessor and runtime assemblers for PowerPC, Sparc and Pentium are
available online at http://www-sor.inria.fr/projects/vvm. Full documentation and
several examples are provided with the package, including the above RPN compiler and
a small stack-based interpreted language that uses an optimising dynamic code
generator to achieve the same performance as statically—compiled, optimised C on
numerical benchmarks.

Appendix: full text of RPN compiler example

/* . c —_k */
#cpu pentium

#include <stdio.h>

#include <stdlib.h>

typedef int (*pifi)(int);

pifi rpnCompile(char *expr)
{
static insn *codePtr= 0;
pifi fn;
if (codePtr == 0)
codePtr= (insn *)malloc(1024);
#[
.org codePtr
.align 4
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), Y%eax
#
while (*expr) {
char buf[32];
int n;
if (sscanf(expr, "%[0-9]%n", buf, &n)) #[
! expr+=n-1;
pushl %eax
movl $(atoi(buf)), Y%eax
#
else if (*expr == "+") #[
popl %ecx
addl %ecx, Y%eax
#
else if (*expr =="-") #[
movl %eax, %ecx
popl %eax
subl %ecx, %eax
#
else if (*expr == ") #[
popl %ecx
imull %ecx, %eax
#
else if (*expr =="I") #[
movl %eax, %ecx
popl %eax
cltd
idivl %ecx, %eax
#
else {
fprintf(stderr, "cannot compile: %s\n", expr);
abort();
}
++expr;
}
#[
leave
ret
#
fn= (pifi)codePtr;
codePtr=asm_pc;
return fn;

int main()
{
pifi c2f= rpnCompile("9*5/32+");
pifi f2c= rpnCompile("32-5*9/");
inti;
for (i= 0; i <= 100; i+= 10)
printf(" %3d C = %3d F\n", i, c2f(i));
for (i= 32; i <= 212; i+= 10)
printf(" %3d F = %3d C\n", i, f2¢(i));
return O;

