
5. Seaside

Lukas Renggli and Marcus Denker

ST — Seaside

5.2

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Original lecture notes by Lukas Renggli

Lukas Renggli and Marcus Denker

ST — Seaside

5.3

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Lukas Renggli and Marcus Denker

ST — Seaside

5.4

Introduction: Web Applications

Example: Adding two numbers

Lukas Renggli and Marcus Denker

ST — Seaside

5.5

What is going on?

<form action=“second.html”>
<input type=“text” name=“value1”>
<input type=“submit” name=“OK”>

</form>

<form action=“result.html”>
<input type=“hidden”

name=“value1” value=“<% value1 %>”>
</form>

<p>
<% value1 + value2 %>

</p>

First.hml

second.hml

result.hml

Lukas Renggli and Marcus Denker

ST — Seaside

5.6

Control Flow:
HTTP request-response

User:
Web browser

first.html

second.html

GET first.html

<a href=”second.html?number1=...”

GET second.html?number1=...

<a href=”result.html?number1=...&number2=...”

Lukas Renggli and Marcus Denker

ST — Seaside

5.7

Something is wrong…

> Control-flow quite arcane
— Remember GOTO?
— We do not care about HTTP!

> How to debug that?

> And what about
— Back button?
— Copy of URL (second browser)?

Lukas Renggli and Marcus Denker

ST — Seaside

5.8

What we want

> Why not this?

go
|number1 number2 |

number1 := self request: ‘First Number’.
number2 := self request: ‘Second Number’.

self inform: ‘The result is ‘,
(number1 + number2) asString

Lukas Renggli and Marcus Denker

ST — Seaside

5.9

Seaside: Features

> Sessions as continuous piece of code
> XHTML/CSS building
> Callback based event model
> Composition and reuse
> Debugging and Development tools

Lukas Renggli and Marcus Denker

ST — Seaside

5.10

XHTML Building

html div id: ‘title’; with: ‘Title’
html div id: ‘list’; with: [

html span class: ‘item’; with: ‘Item 1’.
html span class: ‘item’; with: ‘Item 2’.

]

<div id=“title”>Title</div>
<div if=“list”>

Item 1
Item 2

</div>

Lukas Renggli and Marcus Denker

ST — Seaside

5.11

CSS

> CSS Zengarden: http://csszengarden.com

Lukas Renggli and Marcus Denker

ST — Seaside

5.12

Callback Event Model

Example3>>renderContentOn: html
html form: [
html submitButton
callback: [self inform: ‘Hello’];
text: ‘Say Hello’]

....
<form action="/seaside/example2" method="post">
<input type="hidden" name="_s" value="JBbTXBnPaTLOjcjI" class="hidden"/>
<input type="hidden" name="_k" value="FFQrpnBg" class="hidden" />
<input type="submit" name="1" value="Say Hello" class="submit" />
</form>
....

Lukas Renggli and Marcus Denker

ST — Seaside

5.13

Composition + Reuse

Example:
Multicounter

More later!

Lukas Renggli and Marcus Denker

ST — Seaside

5.14

Example: SqueakSource

Lukas Renggli and Marcus Denker

ST — Seaside

5.15

Example: DabbleDB

Dabbledb.com

Lukas Renggli and Marcus Denker

ST — Seaside

5.16

Example: CMSBox

cmsbox.ch

Lukas Renggli and Marcus Denker

ST — Seaside

5.17

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Lukas Renggli and Marcus Denker

ST — Seaside

5.18

Installing Seaside

> Easy: Get from
— http://www.iam.unibe.ch/~scg/Teaching/Smalltalk/Exercises/05Seaside/
— For the config tool: user: admin, passwd: seaside

> Or install by hand
— Install Seaside 2.8a via SqueakMap
— Update using Monticello
— WAKom startOn: 8080
— Point browser to http://localhost:8080/seaside

Lukas Renggli and Marcus Denker

ST — Seaside

5.19

Seaside

http://localhost:8080/seaside

Lukas Renggli and Marcus Denker

ST — Seaside

5.20

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Lukas Renggli and Marcus Denker

ST — Seaside

5.21

2. Control Flow

> Defining control flow

> Convenience methods

> Call / Answer

> Transactions

Lukas Renggli and Marcus Denker

ST — Seaside

5.22

Defining Flow

> Create a subclass of WATask
— Implement the method #go
— Split the method #go into smaller parts to ensure readability

> Tasks are a special kind of component
— No visual representation
— Define a logical flow (#go)
— Call other components for output

Lukas Renggli and Marcus Denker

ST — Seaside

5.23

Convenience Methods

> #inform: aString
> #confirm: aString
> #request: aString
> #request:label:default:

Lukas Renggli and Marcus Denker

ST — Seaside

5.24

Call and Answer

> #call: aComponent
— Transfer control to aComponent

> #answer: anObject
— anObject will be returned from #call:
— Receiving component will be removed

Lukas Renggli and Marcus Denker

ST — Seaside

5.25

Call and Answer

Client

A

B

A

Server
A>>go

x := self call: B
x asString.

B>>go
…
self answer: 77.

A>>go
x := self call: B.
x astring.

-> 77

Lukas Renggli and Marcus Denker

ST — Seaside

5.26

Transactions

> Sometimes it is required to prevent the user from going
back within a flow

> Calling #isolate: treats the flow defined in the block as a
transaction

> Users are able to move back and forth within the
transaction, but once completed, they cannot go back
anymore

Lukas Renggli and Marcus Denker

ST — Seaside

5.27

Example for #isolate:

self isolate: [
self doShopping.
self collectPaymentInfo].

Self showConfirmation.

Lukas Renggli and Marcus Denker

ST — Seaside

5.28

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Lukas Renggli and Marcus Denker

ST — Seaside

5.29

3. Components

> Rendering
— XHTML
— CSS

> Callbacks
— Anchor
— Form

> Customization

Lukas Renggli and Marcus Denker

ST — Seaside

5.30

Components

> Components are the Views (and Controllers) of Seaside
applications.

> Components keep their state (model and state of user-
interface) in instance-variables.

> Components define the visual appearance and handle
user interactions

Lukas Renggli and Marcus Denker

ST — Seaside

5.31

Building Components

> Components are created by subclassing WAComponent
> Add instance-variables to hold your model and user-

interface state
> Put view related methods in a category called rendering
> Put controller related methods into method categories

named accessing, actions, private

Lukas Renggli and Marcus Denker

ST — Seaside

5.32

Rendering

> XHTML is built programmatically.
> This process is called rendering.

> Create a method called #renderContentOn:

SomeComponent>>renderContentOn: html
html text: ‘Hello World’

Lukas Renggli and Marcus Denker

ST — Seaside

5.33

Text Rendering

> Render a string:

> Render an un-escaped string:

> Render any object (using double dispatch):

 html text: ‘My Text’

 html html: ‘<foo>Zork</foo>’

 html render: 1

Lukas Renggli and Marcus Denker

ST — Seaside

5.34

Canvas and Brushes

> html parameter is instance of WARenderingCanvas
— Basic html output
— Render logic

> Canvas provides brushes
— For rendering html tags

Lukas Renggli and Marcus Denker

ST — Seaside

5.35

Basic Brushes

> Render a new line
:

> Render a horizontal Rule <hr />:

> Render a non-breaking space :

 html break.

 html horizontalRule.

 html space.

Lukas Renggli and Marcus Denker

ST — Seaside

5.36

Using Brushes

1. Ask the canvas for a div brush

2. Configure the brush, e.g. set attributes

3. Render the contents of the tag-brush:

 html div.

 html div class: ‘beautiful’.

 html div
class: ‘beautiful’;
with: ‘Hello World’.

Lukas Renggli and Marcus Denker

ST — Seaside

5.37

Painting with Brushes

 html div

 html div
class: ‘beautiful’

 html div
class: ‘beautiful’;
with: ‘Hello World’.

 <div></div>

<div class=“beautiful”>
</div>

<div class=“beautiful”>
Hello World
</div>

Seaside XHTML

Lukas Renggli and Marcus Denker

ST — Seaside

5.38

Nesting Brushes

> Render a text in bold:

> Render a text in italic

> Render a text in bold and italic:

html strong with: ‘My Text’.

 html emphasis with: ‘My Text’.

 html strong with: [
html emphasis with: ‘My Text’].

Lukas Renggli and Marcus Denker

ST — Seaside

5.39

Nesting Brushes

> To nest brushes use the message #with:.
> Always send #with: as the last message in the

configuration cascade.
> The argument of #with: is rendered using double-

dispatch, therefore any object can be passed as an
argument.

> To nest tags, pass a block that renders the elements to
nest.

Lukas Renggli and Marcus Denker

ST — Seaside

5.40

Nesting Brushes

> Render nested divs:

> Render a list:

html div id: ‘frame’; with: [
html div id: ‘contents’; with: …
html div id: ‘sidebar’; with: …].

html orderedList with: [
html listItem with: …
html listItem with: …].

Lukas Renggli and Marcus Denker

ST — Seaside

5.41

Rendering Pitfalls I

> Donʼt change the state of the application while
rendering, unless you have a really good reason to do
so.

> Rendering is a read-only phase.
> Donʼt put all your rendering code into a single method.

Split it into small parts and chose a method name
following the pattern #render*On:

Lukas Renggli and Marcus Denker

ST — Seaside

5.42

Rendering Pitfalls II

> Rendering is a read-ony phase.
— Donʼt send #renderContentOn: from your own code, use

#render: instead.
— Donʼt send #call: and #answer: while rendering

> Always use #with: as the last message in the
configuration cascase of your brush

Lukas Renggli and Marcus Denker

ST — Seaside

5.43

Anchor Callback

> Ask the rendering canvas for an anchor and configure it
with a callback-block:

> The callback-block is cached and will be executed later.

html anchor
callback: [self someAction]
with: ‘Some Action’].

Lukas Renggli and Marcus Denker

ST — Seaside

5.44

Anchor Example

WACounter>>renderContentOn: html
html heading

level: 1;
with: self count.

html anchor
callback: [self increase];
with: ‘++’.

html space.
html anchor

callback: [self decrease];
with: ‘--’.

Lukas Renggli and Marcus Denker

ST — Seaside

5.45

Forms

> Render a form around your form elements:

> Put the Form elements inside the form:

html form: [
html textInput

value: text;
callback: [:value | text := value].

html submitButton].

 html form: […]

Lukas Renggli and Marcus Denker

ST — Seaside

5.46

More Brushes with Callbacks..

> Text Input / Text Area
> Submit Button
> Check-Box
> Radio Group
> Select List
> File-Upload

Have a look at the tests!

Lukas Renggli and Marcus Denker

ST — Seaside

5.47

Register new Component / Task

> Create method #canBeRoot returning true on class
side

> Register using Seaside configuration interface.

> Or call #registerAsApplication: in the class-side
#initialize

Lukas Renggli and Marcus Denker

ST — Seaside

5.48

Roadmap

> Introduction
— Web applications / Overview
— Installation

> Control Flow
> Components
> Composition

Lukas Renggli and Marcus Denker

ST — Seaside

5.49

4. Compositon

> Backtracking

> Subcomponents

> Widgets

Lukas Renggli and Marcus Denker

ST — Seaside

5.50

Backtracking State

> Seaside does not backtrack state by default.
> Often it is not obvious whether an object should be

backtracked or not. Mostly this has to be decided by the
developer on a per-object basis.

> Any object can be declared to be backtracked.

Lukas Renggli and Marcus Denker

ST — Seaside

5.51

Shopping Cart Problem

> Online Bookstore (without backtracking)
— When using the back-button, usually the items should not be

removed from the cart; just resume browsing from the old
location.

> Flight Reservation System (with backtracking)
— When using the back-button, usually you want to check other

flights, this means the selected flight should be removed.

Lukas Renggli and Marcus Denker

ST — Seaside

5.52

Register Object

> Implement method #states that returns an Array that
contains your object.

> This will backtrack the instance-variables of the objects,
not the objects themselves

SomeComponent>>#states
^ Array with: model.

Lukas Renggli and Marcus Denker

ST — Seaside

5.53

Subcomponents

> It is common for a component to display instances of
other components.

> Components can be nested into each other using the
composite pattern.

> A subcomponent is displayed using the method
#render: on the canvas.

Lukas Renggli and Marcus Denker

ST — Seaside

5.54

Initialize Children

> Subcomponents are usually stored within instance
variables of the parent component.

> Subcomponents are commonly created lazily or as part
of the components #initialize method.

SomeComponent>>initialize
super initialize.
counter := WACounter new.

Lukas Renggli and Marcus Denker

ST — Seaside

5.55

Enable Children

> Parent Components must implement a #children
method returning a collection of subcomponents that
they might display.

> If you fail to specify #children correctly, Seaside will
raise an exception.

SomeComponent>>children
^ Array with: counter

Lukas Renggli and Marcus Denker

ST — Seaside

5.56

Render Children

> Children are rendered by sending the message
#render: to the rendering canvas.

> Never directly send #renderContentOn: to the
subcomponent.

SomeComponent>>renderContentOn: html
html heading level: 1; with: ‘My Counter’.
html render: counter.

Lukas Renggli and Marcus Denker

ST — Seaside

5.57

Widgets

> Components can be reused in different contexts within
different applications.

> Seaside is shipped with a small collection of widgets
ready to use.

> Load and use widgets that have been developed by the
Seaside community.

> Write your own widgets that exactly fit your needs

Lukas Renggli and Marcus Denker

ST — Seaside

5.58

Widgets: Examples

> Batched List

> Tab Panel

> Calendar
Have a look at the classes in

Seaside-Components-Widgets

Lukas Renggli and Marcus Denker

ST — Seaside

5.59

Custom Widgets

> Create a new component.
> Add methods to specify domain-model,

subcomponents, properties…
> Assign CSS names/classes to make it skinnable with

css style-sheet.
— Implement method #style to return CSS for component

> Write tests and small example applications.

Lukas Renggli and Marcus Denker

ST — Seaside

5.60

There is more..

> Development Tools
— Demo in the Exercise Session (Halo, Configuration…)
— Debugging: Next Lecture

> AJAX and script.aculo.us

> Persistency (Databases)

Lukas Renggli and Marcus Denker

ST — Seaside

5.61

Literature

> HPI Seaside Tutorial:
— http://www.swa.hpi.uni-potsdam.de/seaside/tutorial

> Ducasse, Lienhard, Renggli: Seaside: A Flexible
Environment for Building Dynamic Web
Applications (IEEE Software, vol. 24 no.5)

> Ducasse, Lienhard, Renggli: Seaside, a Multiple
Control Flow Web Application Framework
(Proceedings ISC04)

> …. More at Seaside.st

Lukas Renggli and Marcus Denker

ST — Seaside

5.62

Attribution-ShareAlike 3.0 Unported
You are free:

to Share — to copy, distribute and transmit the work
to Remix — to adapt the work

Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work.
The best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.
Nothing in this license impairs or restricts the author's moral rights.

License

> http://creativecommons.org/licenses/by-sa/3.0/

