Dynamically Composing Collection
Operations through Collection
Promises

Juan
Alexa

ndre

Pablo Sanc

Serge

oval Alcoce

- Yasett AcL

~ Marcus

rana

Denker,

| ast November in Chile...

Discussing with Juan Paplo about nis research

[7] Juan Pablo Sandoval Alcocer and Alexandre Bergel. Tracking down
performance variation against source code evolution. In Proceedings of
the 11th Symposium on Dynamic Languages, DLS 2015, pages 129-139,
New York, NY, USA, 2015. ACM.

Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Va-
lente. Learning from source code history to identify performance failures.
In Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering, ICPE * 16, pages 37-48, New York, NY, USA,
2016. ACM.

A considerable number of performance bugs and
regressions are related with loops involving collections.

FProblem

o Hiltering, mapping,; and iterating collections are
frequent operations in smalltalk

e |t create lots of intermediate collections

Example

ROAdjustSizeOfNesting class>>on: element
element elementsNotEdge do: [:el | ...].

ROElement>>elementsNotEdge
~ elements reject: #isEdge

Properties

e Cross method boundaries

o Might even be stored in a variable for
readalbility

Current solutions (1)

reject: rejectBlock thenDo: aBlock
| each |
1 to: self size do: [:index |
(rejectBlock value: (each := self at: index))
ifFalse: [aBlock value: each]].

e | Ofs of these defined in Pharo
o Only possible inside one method
e Code needs to be rewritten

Current solutions (2)

e \We could use a stream based iteration
Drotoco

e Code needs to be rewritten

e Not as easily composable
o Will be useful, but not for all cases

Collection Promises

* Delay operations; merge later
e Simple prototype to-evaluate if this idea makes sense

lazySelect: aBlock

~ CollectionPromise new
collection: self;
selector: #select:;
args: { aBlock };
yourself.

CollectionPromise>>lazySelect: aBlock

”... composition rules ...”
(self selector = #select:) ifTrue:[
|arg]
arg := self args first.
self args: {[:ele | (arg value: ele) and: [aBlock value:ele]]}.
~ self.].
(self selector = #collect:) ifTrue:|
self selector: #collect:thenSelect..
self args: {args first . aBlock}.
- self].
”... if none of the rules could be applied ...”
self collection: self evaluate.
self selector: #select:.
self args: { aBlock }.

e handle select; & similar:

CollectionPromise>>select: aBlock
"~ (self lazySelect: aBlock) evaluate.

e all others; BDNU handler

CollectionPromise>>doesNotUnderstand: aMessage
" self evaluate

perform: aMessage selector

withArguments: alMessage arsuments.

Performance: simple bench

 With Intermediate Collections,; using a
combination of the methods:select, collect, and
reject.

* With Collection Promises, Using a combination
of the methods lazySelect:, lazyCollect:, and
lazyReject..

* Without Intermediate Collections, using the
method select:thenCollect: directly.

Performance: result

o Run for different Collection sizes

o Result:
o Slower than rewrite
o Faster than creating intermediate collection

o (Collection size matters: better with large
collections.

Details: see Paper

Result (for us)

e We wanted to know: does it make sense?
o \ery simple prototype shows that it Is promising

* Even thoughn very simple implementation

* Result: Yes, we should continue

Future Work

e Extend to cover more cases

o Can we automatically detect where intermediate
collections are created?

o (Can we detect hotspots?
o Can we reflectively introduce promises?
e [ry to seef we can'get speed-up in practice

Y Y Y ryY rYrYrrYr YXrYyy»»
NI I P P iy

PRS0 PODREO0000EeE00000000000000500800

)
ot

-~
¥

\M\/WJ)‘J)J H, 0.

YA

it
.,:J
JJ

o

o
o>

o

0.8
PSS P
' § 4

ogeg

)

<3

-

S
5

Sl
4

sSsts
J)JJ
5 ®
)

JJ
Jﬂﬂ
o5,
T304
0,058
F)

8006099
ANXAXIN
(XABIIX
2009860
2000008
‘Ml ‘JJ\J))J J) -
YYD
000099
0000000
JU)JJJJ

3
"Jﬂﬁ
3
5.0
Y
) |
) |

3
60,
J)g
74
35
»
33

'S,
=y
S
4
]

»
>

o

