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| ast November in Chile...

Discussing with Juan Paplo about nis research
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A considerable number of performance bugs and
regressions are related with loops involving collections.



FProblem

o Hiltering, mapping,; and iterating collections are
frequent operations in smalltalk

e |t create lots of intermediate collections



Example

ROAdjustSizeOfNesting class>>on: element
element elementsNotEdge do: [ :el | ...].

ROElement>>elementsNotEdge
~ elements reject: #isEdge




Properties

e Cross method boundaries

o Might even be stored in a variable for
readalbility




Current solutions (1)

reject: rejectBlock thenDo: aBlock
| each |
1 to: self size do: [ :index |
(rejectBlock value: (each := self at: index))
ifFalse: [ aBlock value: each ]].

e | Ofs of these defined in Pharo
o Only possible inside one method
e Code needs to be rewritten



Current solutions (2)

e \We could use a stream based iteration
Drotoco

e Code needs to be rewritten

e Not as easily composable
o Will be useful, but not for all cases



Collection Promises

* Delay operations; merge later
e Simple prototype to-evaluate if this idea makes sense

lazySelect: aBlock

~ CollectionPromise new
collection: self;
selector: #select:;
args: { aBlock };
yourself.




CollectionPromise>>lazySelect: aBlock

”... composition rules ...”
(self selector = #select:) ifTrue:[
|arg]
arg := self args first.
self args: {[ :ele | (arg value: ele) and: [aBlock value:ele]]}.
~ self.].
(self selector = #collect:) ifTrue:|
self selector: #collect:thenSelect..
self args: {args first . aBlock}.
- self].
”... if none of the rules could be applied ...”
self collection: self evaluate.
self selector: #select:.
self args: { aBlock }.



e handle select; & similar:

CollectionPromise>>select: aBlock
"~ (self lazySelect: aBlock) evaluate.

e all others; BDNU handler

CollectionPromise>>doesNotUnderstand: aMessage
" self evaluate

perform: aMessage selector

withArguments: alMessage arsuments.




Performance: simple bench

 With Intermediate Collections,; using a
combination of the methods:select, collect, and
reject.

* With Collection Promises, Using a combination
of the methods lazySelect:, lazyCollect:, and
lazyReject..

* Without Intermediate Collections, using the
method select:thenCollect: directly.



Performance: result

o Run for different Collection sizes

o Result:
o Slower than rewrite
o Faster than creating intermediate collection

o (Collection size matters: better with large
collections.

Details: see Paper



Result (for us)

e We wanted to know: does it make sense?
o \ery simple prototype shows that it Is promising

* Even thoughn very simple implementation

* Result: Yes, we should continue



Future Work

e Extend to cover more cases

o Can we automatically detect where intermediate
collections are created?

o (Can we detect hotspots?
o Can we reflectively introduce promises?
e [ry to seef we can'get speed-up in practice
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