
Dynamically Composing Collection
Operations through Collection
Promises
Juan Pablo Sandoval Alcocer, Marcus Denker,
Alexandre Bergel, Yasett Acurana

Last November in Chile…
Discussing with Juan Pablo about his research

A considerable number of performance bugs and
regressions are related with loops involving collections.

Problem
• Filtering, mapping, and iterating collections are

frequent operations in Smalltalk

• It create lots of intermediate collections

Example
ROAdjustSizeOfNesting class>>on: element

element elementsNotEdge do: [:el | ...].

ROElement>>elementsNotEdge
ˆ elements reject: #isEdge

Properties
• Cross method boundaries

• Might even be stored in a variable for
readability

Current solutions (1)
reject: rejectBlock thenDo: aBlock	
	 | each |
	 1 to: self size do: [:index |
	 	 (rejectBlock value: (each := self at: index))
	 	 	 ifFalse: [aBlock value: each]].

• Lots of these defined in Pharo
• Only possible inside one method
• Code needs to be rewritten

Current solutions (2)
• We could use a stream based iteration

protocol
• Code needs to be rewritten

• Not as easily composable
• Will be useful, but not for all cases

Collection Promises
• Delay operations, merge later
• Simple prototype to evaluate if this idea makes sense

lazySelect: aBlock
ˆ CollectionPromise new

collection: self;
selector: #select:;
args: { aBlock };
yourself.

CollectionPromise>>lazySelect: aBlock

”... composition rules …”
(self selector = #select:) ifTrue:[

|arg|
arg := self args first. 
self args: {[:ele | (arg value: ele) and: [aBlock value:ele]]}.
ˆ self.].

(self selector = #collect:) ifTrue:[
self selector: #collect:thenSelect:.
self args: {args first . aBlock}. 
ˆ self].

”... if none of the rules could be applied ...”
self collection: self evaluate. 
self selector: #select:. 
self args: { aBlock }.

• all others: DNU handler

CollectionPromise>>doesNotUnderstand: aMessage 
ˆ self evaluate
perform: aMessage selector
withArguments: aMessage arguments.

• handle select: & similar:

CollectionPromise>>select: aBlock 
ˆ (self lazySelect: aBlock) evaluate.

Performance: simple bench
• With Intermediate Collections, using a

combination of the methods select, collect, and
reject.

• With Collection Promises, using a combination
of the methods lazySelect:, lazyCollect:, and
lazyReject:.

• Without Intermediate Collections, using the
method select:thenCollect: directly.

Performance: result
• Run for different Collection sizes
• Result:

• Slower than rewrite
• Faster than creating intermediate collection
• Collection size matters: better with large

collections.
Details: see Paper

Result (for us)
• We wanted to know: does it make sense?
• Very simple prototype shows that it is promising

• Even though very simple implementation

• Result: Yes, we should continue

Future Work
• Extend to cover more cases
• Can we automatically detect where intermediate

collections are created?
• Can we detect hotspots?
• Can we reflectively introduce promises?
• Try to see if we can get speed-up in practice

Questions ?

