Variables in Pharo

Marcus Denker, Inria

http://marcusdenker.de

http://marcusdenker.de

Plan for an interactive
Exploration

e These Slides where done as an outline / plan for an
interactive exploration

 They might therefore be not exactly the same as the
content of the Demo

Variables in ST80

Temporary Variable
Instance Variable, Class Instance Variable
Class Variable (and Pool Variable)

Globals

Pseudo Variables: self, super, thisContext

Instance Variables

Defined by the Class (or Trait)

Can be read via the object:

instVarNamed: (put:), #instVarAt: (put:)
Instance Variables have an offset in the Object

Defined by the order of the defined vars in the Hierarchy

1@2 instVarNamed: 'x'

Temporary Variable

 Defined by a method or Block
* Arguments are temps, too

e (Can be read via the context

® #tempNamed:, tempNamed:put:

[| temp | temp := 1. thisContext tempNamed: 'temp'] value

e With Closures this is more complex than you ever want to
know!

Globals

Entries in the “Smalltalk globals” Dictionary

Contain the value Smalltalk globals at: #Object.
Object binding value.

Can be read via the global Dictionary

Access via #value / value: on the Association

Class Vars and Pool Vars are just Associations from other
Dictionaries

“Everything is an Object”

 For Variables... not really

Globals/Class Vars

* Here we have at least the Association (#binding):
Object binding
e But there is no “GlobalVariable” class
* No API other than #value:/#value

e (Classes define just names of variables

Instance Variables

The class just knows the names

Point allinstVarNames
There is no Object representing instance variables
Classes define just names of variables

Bytecode accesses by offset

Temporary Variables

* The methods know nothing. Even to know the variable
name we need the compiler (and the source)

* There is no object representing temp Variables

e Reflective read and write is *hard* -> compiler needs to
create extensive meta-data

Why Not Do Better?

e Of course memory was a concern in 1980, but today we
should be able to do better!

* Why not have objects (and a class Hierarchy) that
describes all Variables in the system?

Variables

* Every defined Variable is described a meta object
e Class Hierarchy: Variable

* GlobalVariable

e ClassVariable

 Temporary Variables

e |nstance Variables (aka Slots)

The Hierarchy

_ e |ocalVariable
e Variable

 ArgumentVariable

e | iteralVariable |
e TemporaryVariable

e (ClassVariable e ReservedVariable

e GlobalVariable * SeliVariable

. * SuperVariable
e UndeclaredVariable

e ThisContextVariable

» WorkspaceVariable
e Slot

Example: vars of a class

(et all Variables of a class Point instanceVariables
* |nspect it

e #usingMethods

Instance Variable

e Read x in a Point

(Point instanceVariables first) read: (5@4)

e Write

point := 5@4.
(Point instanceVariables first) write: 100 to: point.

e read/write without sending a message to the object

Globals

 Object binding class

e QObject binding read

e We keep the Association API so the Global Variables can
play the role of associations in the global dictionary.

Object binding usingMethods

Temporary Variables

* There are too many to allocate them all

 They are created on demand (with the AST)

((LinkedList>>#do:) temporaryVariableNamed: 'aLink')

#lookupVar:

e Every variable knows the scope is was defined in
 Every scope know the outer scope

(Point slotNamed: #x) scope outerScope

* #lookupVar: looks up names along the scope

[| temp [thisContext lookupVar: 'temp'] value.

[| temp [thisContext lookupVar: ‘Object'] value

Debugger: Read Vars

* In the Debugger we to be able to read Variables from a
Dolt.

e |ookupVar, then readlnContext works for all Variables!

[| temp | temp :=1 . (thisContext lookupVar: 'temp')
readInContext: thisContext] value

e Doltln: uses this:

Context>>readVariableNamed: aName
A (self lookupVar: aName) readinContext: self

Variables as AST
Annotations

* Pharo uses the RB AST
 RBVariableNode instance for every use of a Variable

e Annotated with subclasses of Variables:

(Point>>#x) ast variableNodes first variable == (Point slotNamed: #x)

OCASTSemanticAnalyzer

e OCASTSemanticAnalyzer is the visitor that does the name
analysis

e Adds a scope for each block/the method
e Adds defined variables to the scope

 Every RBVariableNode use will get annotated with the
variable that #lookUpVar: finds

Variables and Bytecode

e Compiler just delegates to the Variable

e |nstanceVariableSlot>>#emitStore:

emitStore: methodBuilder
"generate store bytecode"
methodBuilder storelnstVar: index

e emitStore/emitValue:

Does that mean...

e |f variables are defined by a class, could we not make a
subclass?

 And even override the code generation methods ?!

Now let’s create our own
kind of Variable!

Lazy Variables

 Two ways to initialize instance state in ST80
e implement #initialize method (#new calls it)

* uUse accessors and lazy init pattern

e Can we not do better? Can the Variable not initialize
itself?

Lazy Variables

InstanceVariableSlot subclass: #LazyInitializedInstanceVariable
instanceVariableNames: 'default'’
classVariableNames: ''
package: ‘CompilerTalk’

printOn: aStream

aStream
store: self name;
nextPutaAll: ' => ';

nextPutAll: self class name;
nextPutAll: ' default: '.
default printOn: aStream

Lazy Variables

read: anObject
"if the value is nil, we write the default value "
~ (super read: anObject) i1fNil: |
self write: default to: anObject]

emitValue: aMethodBuilder

"generate bytecode for '<varname> ifNil: [<varname> := default]'"

aMethodBuilder
pushInstVar: index;
pushDup;
pushLiteral: nil;
send: i==;
jumpAheadTo: #target if: false;
popTop;
pushLiteral: default;
storeInstVar: index;
jumpAheadTarget: #target

Let’s use it

Object subclass: #MyClass
instanceVariableNames: 'var 9
classVariableNames: ' "
package: ‘CompilerTalk’

How can we make ‘var’ to be a LazyinitializedInstanceVariable?

Class Definition

e \We need a new way to define classes: Fluid Class
Definition

* uses cascade for extensibility

* no string, but {} arrays for variables

Fluid Class Definition

Object << #Point
slots: { #x . #y };
tag: 'BasicObjects’;
package: 'Kernel'

Fluid Class Definition

* Pharo9: Default is the ST80 style class definition
* Fluid can be enabled

e |t is used automatically when needed (when using a self
defined Variable, for example)

e Goal: Default for Pharo 10

Let’s use it

Object << #MyClass
slots: { #var };
package: ‘CompilerTalk’

#notation for normal instance Variables

Let’s use it

Object << #MyClass
slots: { #var => LazyInitializedInstanceVariable default: 5 };
package: ‘CompilerTalk’

For defining other variables: use =>

MyClass new var.
(MyClass new var: 8) var

Inspect method to see bytecode
put halt in read: method of Slot

thisProcess

* Jo get the current Process we use a message send to a
global variable. But we could use a variable like
thisProcess

* This avoids a message send (and possible interrupt
check) as we can emit a bytecode

self, thisContext..

e (Object lookupVar: ‘thisContext’) usingMethods

e See classes
e ThisContextVariable

o SelfVariable

e SuperVariable

The Code

ReservedVariable << #ThisProcessVariable
slots: {};
tag: 'Variables';
package: 'Kernel'

emitValue: methodBuilder
methodBuilder pushThisProcess

class side:
variableName
A 'thisProcess'

Smalltalk globals resetReservedVariables

Compatibility

e Fully backward compatible: we can load ST80 style class
definitions (and Pharo9 just shows this view by default)

o Reflective APl is compatible: “instVarAt:”... still exist

e |f you want to restrict yourself to ST80, a checker could
be easily created

Compatibility

e But if you start to use your own kind of Variables, you
code will not be “ST80” compatible anymore

 But you will be able to use the power of the new
abstraction provided

* Was this not the original idea behind Smalltalk? That a
Programming System is a Medium?

Where do we use it?

We are careful! We use Pharo ourselves...
 We need a stable system to work with
 We need to learn about how to use Variables best
Variables are used by the Compiler internally
Every instance variable is an InstanceVariableSlot (Globals, class vars)
Variables are used by the Debugging infrastructure to read/write
* replaced the DebuggerMethodMap

The Spec Ul Framework uses ObservableSiot

Next Steps Variables

DoitVariable for nicer code in #Doltln: methods
Undeclared Variables

e programmer interaction in read/write, not compile!
e better behaviour for test-first development
Implement ThisProcessVariable in Pharo10

Use WeakSlot to simplify some code

Next Steps Fluid Classes

* Finish the last problems (see issue tracker), make it the
default

 Experiments with Meta Data for Classes
 Jag abstract classes
 Experiment with Pragmas for classes

e Compiler, compiler plugging, compiler options

More..

e Extend the MetaLink Model to allow MetalLinks on
Variables (first code is there already)

* More Experiments about Slot Composition

 Implement Default value once, use it on ClassVariable,
InstanceVariableSlot and WeakSlot

* First prototype, but it turned out to be too complex

Thanks...

e This is the work on *many” contributors from the Pharo
Community

 Thanks for lots of interesting discussions, ideas, and
code!

Help Wanted

 We are always interested in improvements!
e Pharo 10 is under active development
e 30-40 Pull Requests integrated per week

* Your Improvements are Welcome!

https://github.com/pharo-project/pharo

Questions?

